首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.  相似文献   

2.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   

3.
The bird pollination systems of the New and Old Worlds evolved independently, and differ in many aspects. New World plants are often presented as those adapted to hovering birds while Old World plants to perching birds. Most Neotropical studies also demonstrate that in hummingbird species rich assemblages, only a small number of highly specialized birds exploits the most specialized plants with long corollas. Nevertheless, recent research on bird–plant pollination interactions suggest that sunbird pollination systems in the Old World have converged more with the highly specialized hummingbird pollination systems than previously thought. In this study we focus on the pollination systems of the bird pollination syndrome Impatiens species on Mt. Cameroon, West Africa. We show that despite the high diversity of sunbirds on Mt. Cameroon, only Cyanomitra oritis appear to be important pollinator of all Impatiens species. This asymmetry indicates the absence of pair wise co‐evolution and points to a diffuse co‐evolutionary process resulting in guilds of highly specialized plants and birds; a situation well known from hummingbirds and specialized plant communities of the New World. Additionally, the herbaceous habits of Impatiens species, the frequent adaptations to pollination by hovering birds, and the habitat preference for understory in tropical forests or epiphytic growth, resemble the highly specialized Neotropical plants. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 127–133.  相似文献   

4.
We test the hypotheses proposed by Gentry and Schnitzer that liana density and basal area in tropical forests vary negatively with mean annual precipitation (MAP) and positively with seasonality. Previous studies correlating liana abundance with these climatic variables have produced conflicting results, warranting a new analysis of drivers of liana abundance based on a different dataset. We compiled a pan-tropical dataset containing 28,953 lianas (≥2.5 cm diam.) from studies conducted at 13 Neotropical and 11 Paleotropical dry to wet lowland tropical forests. The ranges in MAP and dry season length (DSL) (number of months with mean rainfall <100 mm) represented by these datasets were 860–7250 mm/yr and 0–7 mo, respectively. Pan-tropically, liana density and basal area decreased significantly with increasing annual rainfall and increased with increasing DSL, supporting the hypotheses of Gentry and Schnitzer. Our results suggest that much of the variation in liana density and basal area in the tropics can be accounted for by the relatively simple metrics of MAP and DSL.  相似文献   

5.
Shaw AJ  Cox CJ  Boles SB 《Molecular ecology》2003,12(10):2553-2570
DNA sequence data from the nuclear ribosomal internal transcribed spacers (ITS) and the trnL-trnF chloroplast DNA regions were used to quantify geographical partitioning of global biodiversity in peatmosses (Sphagnum), and to compare patterns of molecular diversity with patterns of species richness. Molecular diversity was estimated for boreal, tropical, Neotropical, nonboreal (tropical plus Southern Hemisphere), Old World and New World partitions, based on a total of 436 accessions. Diversity was partitioned among geographical regions in terms of combined nuclear and chloroplast sequence data and separately for the ITS and trnL-trnF data sets. Levels of variation were estimated using phylogenetic diversity (PD), which incorporates branch lengths from a phylogenetic tree, and the number of polymorphic nucleotide sites. Estimates of species richness suggest that peatmoss diversity is higher in New World than Old World regions, and that the Neotropics constitute a "hotspot" of diversity. Molecular estimates, in contrast, indicate that peatmoss biodiversity is almost evenly divided between New and Old World regions, and that the Neotropics account for only 20-35% of global peatmoss diversity. In general, levels of tropical and boreal peatmoss molecular diversity were comparable. Two species, S. sericeum from the Old World tropics and S. lapazense from Bolivia, are remarkably divergent in nucleotide sequences from all other Sphagna and together account for almost 20% of all peatmoss diversity, although they are represented by only three of the 436 accessions (0.7%). These species clearly demonstrate the nonequivalence of species biodiversity value.  相似文献   

6.
Large mammalian herbivores play an important role in shaping the diversity of tropical forests by affecting the survival of seedlings and saplings beneath parent plants. The white‐lipped peccary (Tayassu pecari) accounts for the largest herbivore biomass that controls seed and seedling survival in Neotropical ecosystems. However, hunting and habitat loss has driven peccaries to local extinction for most of their original distribution, so it is likely that their absence will affect plant recruitment dynamics. We tested the effects of peccary local extinction on the density and spatial distribution of the hyperdominant palm Euterpe edulis by performing a fine‐scale characterization of its spatial recruitment in six forest sites in the Brazilian Atlantic forest. We compared the age structure and the spatial patterns of seedlings, saplings, and adults as well as the relationship between them. We found that while under the presence of peccaries there was a decrease in recruitment rates under adults, the local extinction of these large mammals led to a more clumped process of spatial recruitment. Despite such contrasting spatial patterns of recruitment dynamics, neither age structure nor the random spatial distribution of adults was affected by the presence or absence of peccaries, indicating that their early effects on these palm populations are mitigated as recruitment advances. Our findings highlight the role of large‐bodied forest‐dwelling herbivores in regulating the fine‐scale spatial recruitment of plants and advance our understanding on the effects of defaunation in tropical forests. Abstract in Portuguese is available with online material.  相似文献   

7.
The pelicans are a charismatic group of large water birds, whose evolutionary relationships have been long debated. Here we use DNA sequence data from both mitochondrial and nuclear genes to derive a robust phylogeny of all the extant species. Our data rejects the widespread notion that pelicans can be divided into white- and brown-plumaged groups. Instead, we find that, in contrast to all previous evolutionary hypotheses, the species fall into three well-supported clades: an Old World clade of the Dalmatian, Spot-billed, Pink-backed and Australian Pelicans, a New World clade of the American White, Brown and Peruvian Pelicans, and monospecific clade consisting solely of the Great White Pelican, weakly grouped with the Old World clade. We discuss possible evolutionary scenarios giving rise to this diversity.  相似文献   

8.
Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics.  相似文献   

9.
Sahas Barve  Nicholas A. Mason 《Ibis》2015,157(2):299-311
The ecology of cavity nesting in passerine birds has been studied extensively, yet there are no phylogenetic comparative studies that quantify differences in life history traits between cavity‐ and open‐nesting birds within a passerine family. We test existing hypotheses regarding the evolutionary significance of cavity nesting in the Old World flycatchers (Muscicapidae). We used a multi‐locus phylogeny of 252 species to reconstruct the evolutionary history of cavity nesting and to quantify correlations between nest types and life history traits. Within a phylogenetic generalized linear model framework, we found that cavity‐nesting species are larger than open‐nesting species and that maximum clutch sizes are larger in cavity‐nesting lineages. In addition to differences in life history traits between nest types, species that breed at higher latitudes have larger average and maximum clutch sizes and begin to breed later in the year. Gains and losses of migratory behaviour have occurred far more often in cavity‐nesting lineages than in open‐nesting taxa, suggesting that cavity nesting may have played a crucial role in the evolution of migratory behaviour. These findings identify important macro‐evolutionary links between the evolution of cavity nesting, clutch size, interspecific competition and migratory behaviour in a large clade of Old World songbirds.  相似文献   

10.

Question

Global‐scale forest censuses provide an opportunity to understand diversification processes in woody plant communities. Based on the climatic or geographic filtering hypotheses associated with tropical niche conservatism and dispersal limitation, we analysed phylogenetic community structures across a wide range of biomes and evaluated to what extent region‐specific processes have influenced large‐scale diversity patterns of tree species communities across latitude or continent.

Location

Global.

Methods

We generated a data set of species abundances for 21,379 angiosperm woody plants in 843 plots worldwide. We calculated net relatedness index (NRI) for each plot, based on a single global species pool and regional species pools, and phylogenetic β‐diversity (PBD) between plots. Then, we explored the correlations of NRI with climatic and geographic variables, and clarified phylogenetic dissimilarity along geographic and climatic differences. We also compared these patterns for South America, Africa, the Indo‐Pacific, Australia, the Nearctic, Western Palearctic and Eastern Palearctic.

Results

NRI based on a global‐scale species pool was negatively associated with precipitation and positively associated with Quaternary temperature change. PBD was positively associated with geographic distance and precipitation difference between plots across tropical and extratropical biomes. Moreover, phylogenetic dissimilarity was smaller in extratropical regions than in regions including the tropics, although temperate forests of the Eastern Palearctic showed a greater dissimilarity within extratropical regions.

Conclusions

Our findings support predictions of the climatic and geographic filtering hypotheses. Climatic filtering (climatic harshness and paleoclimatic change) relative to tropical niche conservatism played a role in sorting species from the global species pool and shaped the large‐scale diversity patterns, such as the latitudinal gradient observed across continents. Geographic filtering associated with dispersal limitation substantially contributed to regional divergence of tropical/extratropical biomes among continents. Old, long‐standing geographic barriers and recent climatic events differently influenced evolutionary diversification of angiosperm tree communities in tropical and extratropical biomes.  相似文献   

11.
The spittlebug family Cercopidae is currently divided into two subfamilies: the paraphyletic Old World Cercopinae and the monophyletic New World Ischnorhininae. The most recent classification scheme proposed by Fennah in 1968 divided the New World Cercopidae into four tribes: Tomaspidini, Ischnorhinini, Hyboscartini and Neaenini. Herein we present a phylogenetic analysis of Ischnorhininae using 108 morphological characters and including 53 of the 59 recognized genera, to evaluate the tribal‐level classification and understand the processes underlying the current distributional patterns of these genera. We found significant support for the monophyly of many Neotropical genera, but Fennah's tribal classification is revised because tribes Neaenini, Ischnorhinini and Tomaspidini were recovered as polyphyletic. Hyboscartini was synonymized with Tomaspidini. A taxonomic key to tribes and genera of Neotropical spittlebugs is provided based mostly on recovered apomorphies. The biogeographical analysis suggests a Neotropical origin of ischnorhinines, more specifically in northwestern South America. This was possibly coincident spatially and temporally with the origin of grasses, with ancestral range expansions southward to the Amazonian and Paraná regions, and posterior vicariant events, possibly related to the expansion of forests in the Chacoan region, the South America diagonal of open formations. Dispersals to the Chacoan region and to the Nearctic region are hypothesized to have occurred only within genera. In the Chacoan region it is associated with more recent events, such as the diversification of C4 grasses and establishment of the savannas and seasonally dry forests.  相似文献   

12.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   

13.
14.
To test three hypotheses accounting for bipolar distributions in Engraulis , seven of eight taxa (except E. eurystole ) were surveyed with allozymes (34 loci) and 521 bp of the mitochondrial DNA cytochrome b gene. Both allozymes and mtDNA sequences revealed deep separations between New World and Old World anchovies with a mean allozyme genetic distance D  = 1·26 and net mtDNA sequence divergence d  = 15%. These values reflected separations of 5 to 10 million years. Contrary to previous phylogenetic hypotheses, which place north‐east Pacific E. mordax and south‐east Pacific E. ringens as sister taxa, the south‐west Atlantic E. anchoita and E. ringens are most closely related to each other. The north‐east Pacific E. mordax is the closest lineage to the Old World Engraulis , a group of taxa showing low divergences typical of population‐level separations (mean D  = 0·06; mean d  = 0·87%). Bipolarities of sister taxa in the east Atlantic and west Pacific reflect recent dispersals. Bipolarities in the east Pacific and west Atlantic represent paraphyletic taxa in lineages isolated since the Miocene. None of the bipolarities can be attributed to tectonic separations or competitive displacements from the tropics, but the latter situation should be re‐evaluated with comparisons to tropical anchovies of the New World.  相似文献   

15.
Aim At broad geographical scales, species richness is a product of three basic processes: speciation, extinction and migration. However, determining which of these processes predominates is a major challenge. Whilst palaeontological studies can provide information on speciation and extinction rates, data are frequently lacking. Here we use a recent dated phylogenetic tree of mammals to explore the relative importance of these three processes in structuring present‐day richness gradients. Location The global terrestrial biosphere. Methods We combine macroecological data with phylogenetic methods more typically used in community ecology to describe the phylogenetic history of regional faunas. Using simulations, we explore two simple phylogenetic metrics, the mean and variance in the pairwise distances between taxa, and describe their relationship to phylogenetic tree topology. We then use these two metrics to characterize the evolutionary relationships among mammal species assemblages across the terrestrial biome. Results We show that the mean and variance in the pairwise distances describe phylogenetic tree topology well, but are less sensitive to phylogenetic uncertainty than more direct measures of tree shape. We find the phylogeny for South American mammals is imbalanced and ‘stemmy’ (long branches towards the root), consistent with recent diversification within evolutionarily disparate lineages. In contrast, the phylogeny for African mammals is balanced and ‘tippy’ (long branches towards the tips), more consistent with the slow accumulation of diversity over long times, reflecting the Old World origin of many mammal clades. Main conclusions We show that phylogeny can accurately capture biogeographical processes operating at broad spatial scales and over long time periods. Our results support inferences from the fossil record – that the New World tropics are a diversity cradle whereas the Old World tropics are a museum of old diversity.  相似文献   

16.
Aim Climate is recognized for the significant role it plays in the global distribution of plant species diversity. We test the extent to which two aspects of climate, namely temperature and precipitation, explain the spatial distribution of high taxonomic groupings (plant families) at a regional spatial resolution (the Neotropics). Our goal is to provide a quantitative and comparative framework for identifying the local effects of climate on the familial composition of tropical forests by identifying the influence of climate on the number of individuals and the number of species within a given family. Location One hundred and forty‐four 0.1‐ha forest transect sites from the Neotropics (19.8°N–27.0°S and 40.1°W–105.1°W). Data were originally collected by A.H. Gentry. Methods Spatial variability in the abundance (density) and species richness of 159 tropical plant families across a range of predominately lowland Neotropical landscapes were attributed to eight temperature and precipitation measures using the eigen analysis method of two‐field joint single‐value decomposition. Results Climate significantly affects the within‐clade diversity of several ecologically important Neotropical plant families. Intrafamily abundance and richness covary with temperature in some families (e.g. Fabaceae) and with precipitation in others (e.g. Bignoniaceae, Arecaceae), with differing climatic preferences observed even among co‐occurring families. In addition, the family‐level composition of Neotropical forests, in both abundance and richness, appears to be influenced more by temperature than by precipitation. Among lowland families, only Asteraceae increased in species richness with decreasing temperature, although several families, including Melastomataceae and Rubiaceae, are more abundant at lower temperatures. Main conclusions Although plant diversity is known to vary as a function of climate at the species level, we document clear climatic preferences even at the rank of family. Temperature plays a stronger role in governing the familial composition of tropical forests, particularly in the richness of families, than might be expected given its narrow annual and diurnal range in the tropics. Although other environmental or geographic variables that covary with temperature may be more causally linked to diversity differences than temperature itself, the results nonetheless identify the taxonomic components of tropical forest composition that may be most affected by future climatic changes.  相似文献   

17.
Insect herbivores have the potential to consume large amounts of plant tissue in tropical forests, but insectivorous vertebrates effectively control their abundances, indirectly increasing plant fitness accordingly. Despite several studies already sought understanding of the top-down effects on arthropod community structure and herbivory, such studies of trophic cascades in old tropics are underrepresented, and little attention was paid to top-down forces in various habitats. Therefore, we examine how flying insectivorous vertebrates (birds and bats) impact arthropods and, consequently, affect herbivore damage of leaves in forest habitats in Papua New Guinea. In a 3-month long predator exclosure experiment conducted at four study sites across varying elevation and successional stage, we found that vertebrate predators reduced arthropod density by ∼52%. In addition, vertebrate predators decreased the mean body size of arthropods by 26% in leaf chewers and 47% in non-herbivorous arthropods but had only a small effect on mesopredators and sap suckers. Overall, the exclusion of vertebrate predators resulted in a ~ 41% increase in leaf damage. Our results, across different types of tropical forests in Papua New Guinea, demonstrate that flying vertebrate insectivores have a crucial impact on plant biomass, create a selective pressure on larger and non-predatory prey individuals and they prey partition with mesopredators.  相似文献   

18.
Phylogenetic relationships of the three lygosomine skink genera occurring both in the Old World and the New World (Mabuya, Scincella and Sphenomorphus) were inferred from mitochondrial DNA sequence of 12S and 16S rRNA genes. Results strongly suggested the non-monophyly for any of these three genera. Within the Mabuya group, Asian members appear to have diverged first, leaving the Neotropical and the Afro-Malagasy Mabuya as sister groups. These relationships, together with the absence of extant or fossil representatives of the Mabuya group from North America, strongly suggest the trans-Atlantic dispersals of Mabuya from Africa to Neotropics. Our results also indicated a closer affinity of the New World Scincella with the New World Sphenomorphus than with the Old World Scincella. Such relationships suggest the trans-Beringian dispersal of the common ancestor from Asia and its subsequent divergence into the North American Scincella and the Neotropical Sphenomorphus.  相似文献   

19.
Toads of the Bufo peltocephalus Group (Anura: Bufonidae) occur throughout the Greater Antilles (Cuba to the Virgin Islands), a geographic region of relatively high endemicity. Previous morphological and immunological studies suggested that the West Indian toads are a monophyletic lineage derived from Neotropical Bufo but were unable to clarify relationships within the group. We examined the evolutionary relationships and biogeography of this group of frogs by collecting approximately 2 kb of mitochondrial DNA sequence data from eight West Indian species and selected non-West Indian species from the New World and the Old World. Our analyses support the monophyly of native West Indian toads and a New World origin for the group. Relationships among the West Indian species are less certain, but a Cuban lineage is defined in most analyses.  相似文献   

20.
The emergence of angiosperm‐dominated tropical forests in the Cretaceous led to major shifts in the composition of biodiversity on Earth. Among these was the rise to prominence of epiphytic plant lineages, which today comprise an estimated one‐quarter of tropical vascular plant diversity. Among the most successful epiphytic groups is the Polypodiaceae, which comprises an estimated 1500 species and displays a remarkable breadth of morphological and ecological diversity. Using a time‐calibrated phylogeny for 417 species, we characterized macroevolutionary patterns in the family, identified shifts in diversification rate, and identified traits that are potential drivers of diversification. We find high diversification rates throughout the family, evidence for a radiation in a large clade of Paleotropical species, and support for increased rates of diversification associated with traits including chlorophyllous spores and noncordiform gametophytes. Contrary to previous hypotheses, our results indicate epiphytic species and groups with humus‐collecting leaves diversify at lower rates than the family as a whole. We find that diversification rates in the Polypodiaceae are positively correlated with changes in elevation. Repeated successful exploration of novel habitat types, rather than morphological innovation, appears to be the primary driver of diversification in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号