首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Functional analysis of the chromo domain of HP1.   总被引:26,自引:2,他引:24       下载免费PDF全文
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein in Drosophila with dosage-dependent effects on heterochromatin-mediated gene silencing. An evolutionarily conserved amino acid sequence in the N-terminal half of HP1 (the 'chromo domain') shares > 60% sequence identity with a motif found in the Polycomb protein, a silencer of homeotic genes. We report here that point mutations in the HP1 chromo domain abolish the ability of HP1 to promote gene silencing. We show that the HP1 chromo domain, like the Polycomb chromo domain, has chromosome binding activity, but to distinct chromosomal sites. We constructed a chimeric HP1-Polycomb protein, consisting of the chromo domain of Polycomb in the context of HP1, and show that it binds to both heterochromatin and Polycomb binding sites in polytene chromosomes. In flies expressing chimeric HP1-Polycomb protein, endogenous HP1 is mislocalized to Polycomb binding sites, and endogenous polycomb is misdirected to the heterochromatic chromocenter, suggesting that both proteins are recruited to their distinct chromosomal binding sites through protein-protein contacts. Chimeric HP1-Polycomb protein expression in transgenic flies promotes heterochromatin-mediated gene silencing, supporting the view that the chromo domain homology reflects a common mechanistic basis for homeotic and heterochromatic silencing.  相似文献   

3.
L Rastelli  C S Chan    V Pirrotta 《The EMBO journal》1993,12(4):1513-1522
Polycomb group genes are necessary for maintaining homeotic genes repressed in appropriate parts of the body plan. Some of these genes, e.g. Psc, Su(z)2 and E(z), are also modifiers of the zeste-white interaction. The products of Psc and Su(z)2 were immunohistochemically detected at 80-90 sites on polytene chromosomes. The chromosomal binding sites of these two proteins were compared with those of zeste protein and two other Polycomb group proteins, Polycomb and polyhomeotic. The five proteins co-localize at a large number of sites, suggesting that they frequently act together on target genes. In larvae carrying a temperature sensitive mutation in another Polycomb group gene, E(z), the Su(z)2 and Psc products become dissociated from chromatin at non-permissive temperatures from most but not all sites, while the binding of the zeste protein is unaffected. The polytene chromosomes in these mutant larvae acquire a decondensed appearance, frequently losing characteristic constrictions. These results suggest that the binding of at least some Polycomb group proteins requires interactions with other members of the group and, although zeste can bind independently, its repressive effect on white involves the presence of at least some of the Polycomb group proteins.  相似文献   

4.
Genetic interactions of the suppressor 2 of zeste region genes   总被引:8,自引:0,他引:8  
A wide variety of gain of function mutations have been induced in the Posterior Sex Comb (Psc)--Aristapedioid (Arp)--Suppressor 2 of zeste (Su(z)2) region of the second chromosome of Drosophila. This region contains at least three apparently related genes, two of which we have been studying. Psc1 has previously been used to identify Psc as a Pc group gene; however, it is a complex mutation with both gain and loss of function character. We report here that the Pc group character of Psc is not due to a gain of function and presumably reflects the function of the wild-type gene. We also provide evidence for a maternal function for Psc, as well as the neighboring Su(z)2 gene. Su(z)2 does not appear to be a Pc group gene as it does not act in a synergistic fashion with other Pc group genes in promoting posteriorly directed transformations. However, we have found that mutations in Su(z)2 do interact in a variety of interesting ways with mutations in Pc group genes.  相似文献   

5.
6.
C. T. Wu  M. Howe 《Genetics》1995,140(1):139-181
The zeste(1) (z(1)) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z(1) achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z(1) eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.  相似文献   

7.
M L Balasov 《Génome》2002,45(6):1025-1034
The position effect of the AR 4-24 P[white, rosy] transposon was studied at cytological position 60F. Three copies of the transposon (within approximately 50-kb region) resulted in a spatially restricted pattern of white variegation. This pattern was modified by temperature and by removal of the Y chromosome, suggesting that it was due to classical heterochromatin-induced position effect variegation (PEV). In contrast with classical PEV, extra dose of the heterochromatin protein 1 (HP1) suppressed white variegation and one dose enhanced it. The effect of Pc-G, trx-G, and other PEV suppressors was also tested. It was found that E(Pc)1, TrlR85, and mutations of Su(z)2C relieve A(R) 4-24-silencing and z1 enhances it. To explain the results obtained with these modifiers, it is proposed that PEV and telomeric position effect can counteract each other at this particular cytological site.  相似文献   

8.
An increase in the dose of the heterochromatin-associated Su(var)3-7 protein of Drosophila augments the genomic silencing of position-effect variegation. We have expressed a number of fragments of the protein in flies to assign functions to the different domains. Specific binding to pericentric heterochromatin depends on the C-terminal half of the protein. The N terminus, containing six of the seven widely spaced zinc fingers, is required for binding to bands on euchromatic arms, with no preference for pericentric heterochromatin. In contrast to the enhancing properties of the full-length protein, the N terminus half has no effect on heterochromatin-dependent position-effect variegation. In contrast, the C terminus moiety suppresses variegation. This dominant negative effect on variegation could result from association of the fragment with the wild type endogenous protein. Indeed, we have found and mapped a domain of self-association in this C-terminal half. Furthermore, a small fragment of the C-terminal region actually depletes pericentric heterochromatin from endogenous Su(var)3-7 and has a very strong suppressor effect. This depletion is not followed by a depletion of HP1, a companion of Su(var)3-7. This indicates that Su(var)3-7 does not recruit HP1 to heterochromatin. We propose in conclusion that the association of Su(var)3-7 to heterochromatin depends on protein-protein interaction mediated by the C-terminal half of the sequence, while the silencing function requires also the N-terminal half containing the zinc fingers.  相似文献   

9.
M. C. Soto  T. B. Chou    W. Bender 《Genetics》1995,140(1):231-243
The genes of the Polycomb group (PcG) repress the genes of the bithorax and Antennapedia complexes, among others. To observe a null phenotype for a PcG gene, one must remove its maternal as well as zygotic contribution to the embryo. Five members of the PcG group are compared here: Enhancer of Polycomb [E(Pc)], Additional sex combs (Asx), Posterior sex combs (Psc), Suppressor of zeste 2 [Su(z)2] and Polycomblike (Pcl). The yeast recombinase (FLP) system was used to induce mitotic recombination in the maternal germline. Mutant embryos were analyzed by staining with antibodies against six target genes of the PcG. The loss of the maternal component leads to enhanced homeotic phenotypes and to unique patterns of misexpression. E(Pc) and Su(z)2 mutations had only subtle effects on the target genes, even when the maternal contributions were removed. Asx and Pcl mutants show derepression of the targets only in specific cell types. Psc shows unusual effects on two of the targets, Ultrabithorax and abdominal-A. These results show that the PcG genes do not act only in a common complex or pathway; they must have some independent functions.  相似文献   

10.
The Polycomb (Pc) group genes of Drosophila are negative regulators of homeotic genes, but individual loci have pleiotropic phenotypes. It has been suggested that Pc group genes might form a regulatory hierarchy, or might be members of a multimeric complex that obeys the law of mass action. Recently, it was shown that polyhomeotic (ph) immunoprecipitates in a multimeric complex that includes Pc. Here, we show that duplications of ph suppress homeotic transformations of Pc and Pcl, supporting a mass-action model for Pc group function. We crossed ph alleles to all members of the Polycomb group, and to E(Pc) and Su(z)2 to look for synergistic effects. We observed extragenic noncomplementation between ph(503) and Pc, Psc(1) and Su(z)2(1) in females, and between ph(409) and Sce(1), Scm(D1) and E(z)(1) mutations in males, suggesting that these gene products might interact directly with ph. Males hemizygous for a temperature-sensitive allele, ph(2), are lethal when heterozygous with mutants in Asx, Pc, Pcl, Psc, Sce and Scm, and with E(Pc) and Su(z)2. Mutations in trithorax group genes were not able to suppress the lethality of ph(2)/Y; Psc(1)/+ males. ph(2) was not lethal with extra sex combs, E(z), super sex combs (sxc) or l(4)102EFc heterozygotes, but did cause earlier lethality in embryos homozygous for E(z), sxc and l(4)102EFc. However, ph(503) did not enhance homeotic phenotypes of esc heterozygotes derived from homozygous esc(-) mothers. We examined the embryonic phenotypes of ph(2) embryos that were lethal when heterozygous or homozygous for other mutations. Based on this phenotypic analysis, we suggest that ph may perform different functions in conjunction with differing subsets of Pc group genes.  相似文献   

11.
Certain Polycomb group (PcG) genes are themselves targets of PcG complexes. Two of these constitute the Drosophila Psc-Su(z)2 locus, a region whose chromatin is enriched for H3K27me3 and contains several putative Polycomb response elements (PREs) that bind PcG proteins. To understand how PcG mechanisms regulate this region, the repressive function of the PcG protein binding sites was analyzed using reporter gene constructs. We find that at least two of these are functional PREs that can silence a reporter gene in a PcG-dependent manner. One of these two can also display anti-silencing activity, dependent on the context. A PcG protein binding site near the Psc promoter behaves not as a silencer but as a down-regulation module that is actually stimulated by the Pc gene product but not by other PcG products. Deletion of one of the PREs increases the expression level of Psc and Su(z)2 by twofold at late embryonic stages. We present evidence suggesting that the Psc-Su(z)2 locus is flanked by insulator elements that may protect neighboring genes from inappropriate silencing. Deletion of one of these regions results in extension of the domain of H3K27me3 into a region containing other genes, whose expression becomes silenced in the early embryo.  相似文献   

12.
13.
Polycomb group (PcG) proteins are required to maintain a stable repression of the homeotic genes during Drosophila development. Mutants in the PcG gene Supressor of zeste 12 (Su(z)12) exhibit strong homeotic transformations caused by widespread misexpression of several homeotic genes in embryos and larvae. Su(z)12 has also been suggested to be involved in position effect variegation and in regulation of the white gene expression in combination with zeste. To elucidate whether SU(Z)12 has any such direct functions we investigated the binding pattern to polytene chromosomes and compared the localization to other proteins. We found that SU(Z)12 binds to about 90 specific eukaryotic sites, however, not the white locus. We also find staining at the chromocenter and the nucleolus. The binding along chromosome arms is mostly in interbands and these sites correlate precisely with those of Enhancer-of-zeste and other components of the PRC2 silencing complex. This implies that SU(Z)12 mainly exists in complex with PRC2. Comparisons with other PcG protein-binding patterns reveal extensive overlap. However, SU(Z)12 binding sites and histone 3 trimethylated lysine 27 residues (3meK27 H3) do not correlate that well. Still, we show that Su(z)12 is essential for tri-methylation of the lysine 27 residue of histone H3 in vivo, and that overexpression of SU(Z)12 in somatic clones results in higher levels of histone methylation, indicating that SU(Z)12 is rate limiting for the enzymatic activity of PRC2. In addition, we analyzed the binding pattern of Heterochromatin Protein 1 (HP1) and found that SU(Z)12 and HP1 do not co-localize.  相似文献   

14.
We report the molecular characterization of the Posterior sex combs-Suppressor 2 of zeste region of Drosophila melanogaster. The distal breakpoint of the Aristapedioid inversion divides the region into two parts. We have molecularly mapped the lesions associated with several loss of function mutations in the Polycomb group gene Posterior sex combs (Psc) proximal to this breakpoint. In addition, we have found that lesions associated with several loss of function mutations in the Suppressor 2 of zeste [Su(z)2] gene lie distal to this breakpoint. Since the breakpoint does not cause a loss of function in either gene, no essential sequences are shared by these two neighboring genes. There are three dominant gain of function mutations in the region that result in abnormal bristle development. We find that all three juxtapose foreign DNA sequences upstream of the Su(z)2 gene, and that at least two of these mutations (Arp1 and vgD) behave genetically as gain of function mutations in Su(z)2. Northern and in situ hybridization analyses show that the mutations result in increased accumulation of the Su(z)2 mRNA, which we argue is responsible for the bristle loss phenotype.  相似文献   

15.
Heterochromatin-associated protein 1 (HP1) is a nonhistone chromosomal protein with a dose-dependent effect on heterochromatin mediated position-effect silencing. It is multiply phosphorylated in vivo. Hyperphosphorylation of HP1 is correlated with heterochromatin assembly. We report here that HP1 is phosphorylated by casein kinase II in vivo at three serine residues located at the N and C termini of the protein. Alanine substitution mutations in the casein kinase II target phosphorylation sites dramatically reduce the heterochromatin binding activity of HP1, whereas glutamate substitution mutations, which mimic the charge contributions of phosphorylated serine, have apparently wild-type binding activity. We propose that phosphorylation of HP1 promotes protein-protein interaction between HP1 and target binding proteins in heterochromatin.  相似文献   

16.
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.  相似文献   

17.
Members of the heterochromatin protein 1 (HP1) family are silencing nonhistone proteins. Here, we show that in P19 embryonal carcinoma (EC) nuclei, HP1 alpha, beta, and gamma form homo- and heteromers associated with nucleosomal core histones. In vitro, all three HP1s bind to tailed and tailless nucleosomes and specifically interact with the histone-fold of histone H3. Furthermore, HP1alpha interacts with the linker histone H1. HP1alpha binds to H3 and H1 through its chromodomain (CD) and hinge region, respectively. Interestingly, the Polycomb (Pc1/M33) CD also interacts with H3, and HP1alpha and Pc1/M33 binding to H3 is severely impaired by CD mutations known to abrogate HP1 and Polycomb silencing in Drosophila. These results define a novel function for the conserved CD and suggest that HP1 self-association and histone binding may play a crucial role in HP1-mediated heterochromatin assembly.  相似文献   

18.
19.
Transcriptional silencing by the Polycomb protein in Drosophila embryos.   总被引:2,自引:2,他引:0  
J Müller 《The EMBO journal》1995,14(6):1209-1220
  相似文献   

20.
F Cléard  M Delattre    P Spierer 《The EMBO journal》1997,16(17):5280-5288
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号