首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure of the T4 phage tail sheath protein, gp18, was studied by limited proteolysis, immunoblotting, and immunoelectron microscopy. Gp18 is extremely resistant to proteolysis in the assembled form of either extended or contracted sheaths, but it is readily cleaved by proteases in the monomeric form, giving rise to stable protease-resistant fragments. Limited proteolysis with trypsin gave rise to a trypsin-resistant fragment, Ala82-Lys316, with a molecular weight of 27K. Chymotrypsin- and thermolysin-resistant fragments were also mapped close to the trypsin-resistant region. The time course of trypsin digestion of the monomeric gp18 as monitored by SDS-polyacrylamide gel electrophoresis and immunoblotting of the gel revealed that the polypeptide chain consisting of 658 amino acid residues is sequentially cleaved at several positions from the C terminus. The N-terminal portion, Thr1-Arg81, was then removed to form the trypsin-resistant fragment. Immunoelectron microscopy revealed that the polyclonal antibodies against the trypsin-resistant fragment bound to the tail sheath. This supported the idea that at least part of the protease-resistant region of gp18 constitutes the protruding part of the sheath protein as previously revealed with three-dimensional image reconstruction from electron micrographs by Amos and Klug [Amos, L. A., & Klug, A. (1975) J. Mol. Biol. 99, 51-73].  相似文献   

2.
Irreversible binding of T-even bacteriophages to Escherichia coli is mediated by the short tail fibres, which serve as inextensible stays during DNA injection. Short tail fibres are exceptionally stable elongated trimers of gene product 12 (gp12), a 56 kDa protein. The N-terminal region of gp12 is important for phage attachment, the central region forms a long shaft, while a C-terminal globular region is implicated in binding to the bacterial lipopolysaccharide core. When gp12 was treated with stoichiometric amounts of trypsin or chymotrypsin at 37 degrees C, an N-terminally shortened fragment of 52 kDa resulted. If the protein was incubated at 56 degrees C before trypsin treatment at 37 degrees C, we obtained a stable trimeric fragment of 3 x 33 kDa lacking residues from both the N- and C-termini. Apparently, the protein unfolds partially at 56 degrees C, thereby exposing protease-sensitive sites in the C-terminal region and extra sites in the N-terminal region. Well-diffracting crystals of this fragment could be grown. Our results indicate that gp12 carries a stable central region, consisting of the C-terminal part of the shaft and the attached N-terminal half of the globular region. Implications for structure determination of the gp12 protein and its folding are discussed.  相似文献   

3.
Gene product (gp) 9 connects the long tail fibers and triggers the structural transition of T4 phage baseplate at the beginning of infection process. Gp9 is a parallel homotrimer with 288 amino acid residues per chain that forms three domains. To investigate the role of the gp9 amino terminus, we have engineered a set of mutants with deletions and random substitutions in this part. The structure of the mutants was probed using monoclonal antibodies that bind to either N-terminal, middle, or C-terminal domains. Deletions of up to 12 N-terminal residues as well as random substitutions of the second, third and fourth residues yielded trimers that failed to incorporate in vitro into the T4 9(-)-particles and were not able to convert them into infectious virions. As detected using monoclonal antibodies, these mutants undergo structural changes in both N-terminal and middle domains. Furthermore, deletion of the first twenty residues caused profound structural changes in all three gp9 domains. In addition, N-terminally truncated proteins and randomized mutants formed SDS-resistant "conformers" due to unwinding of the N-terminal region. Co-expression of the full-length gp9 and the mutant lacking first 20 residues clearly shows the assembly of heterotrimers, suggesting that the gp9 trimerization in vivo occurs post-translationally. Collectively, our data indicate that the aminoterminal sequence of gp9 is important to maintain a competent structure capable of incorporating into the baseplate, and may be also required at intermediate stages of gp9 folding and assembly.  相似文献   

4.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

5.
6.
BACKGROUND: The T4 bacteriophage consists of a head, filled with double-stranded DNA, and a complex contractile tail required for the ejection of the viral genome into the Escherichia coli host. The tail has a baseplate to wh?ch are attached six long and six short tail fibers. These fibers are the sensing devices for recognizing the host. When activated by attachment to cell receptors, the fibers cause a conformational transition in the baseplate and subsequently in the tail sheath, which initiates DNA ejection. The baseplate is a multisubunit complex of proteins encoded by 15 genes. Gene product 9 (gp9) is the protein that connects the long tail fibers to the baseplate and triggers the tail contraction after virus attachment to a host cell. RESULTS: The crystal structure of recombinant gp9, determined to 2.3 A resolution, shows that the protein of 288 amino acid residues assembles as a homotrimer. The monomer consists of three domains: the N-terminal domain generates a triple coiled coil; the middle domain is a mixed, seven-stranded beta sandwich with a topology not previously observed; and the C-terminal domain is an eight-stranded, antiparallel beta sandwich having some resemblance to 'jelly-roll' viral capsid protein structures. CONCLUSIONS: The biologically active form of gp9 is a trimer. The protein contains flexible interdomain hinges, which are presumably required to facilitate signal transmission between the long tail fibers and the baseplate. Structural and genetic analyses show that the C-terminal domain is bound to the baseplate, and the N-terminal coiled-coil domain is associated with the long tail fibers.  相似文献   

7.
HPC-1/syntaxin 1A is a member of the syntaxin family, and functions at the plasma membrane during membrane fusion as the target-soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (t-SNARE). We identified the membrane-anchoring region of HPC-1/syntaxin 1A, and examined its role in anchoring of a protein to the plasma membrane. A series of mutants was created from a cysteine-less mutant of HPC-1/syntaxin 1A by substitution of each residue at the C-terminus with cysteine. The accessibility of the thiol-groups in each mutant was analyzed in vivo. The cysteine (C145) within the N-terminal cytosolic segment was labeled, but not that at C271 or C272, or any of those introduced at the C-terminus. The addition of additional residues to the C-terminal tail of HPC-1/syntaxin 1A allowed labeling by thiol-specific reagents. A monoclonal antibody directed against the C-terminal tail peptide did not react with the protein located at the plasma membrane. In addition, subcellular fractionation and immunocytochemical analyses with various transmembrane mutants showed that the C-terminal tail comprising eight amino acids is essential for anchoring of HPC-1/syntaxin 1A to the plasma membrane. These results indicate that the C-terminal membrane-anchoring region, which comprises 23 amino acids, does not traverse the lipid-bilayer and that the C-terminal tail is essential for anchoring of HPC-1/syntaxin 1A to the plasma membrane.  相似文献   

8.
The distal-half tail fiber of bacteriophage T4 is made of three gene products: trimeric gp36 and gp37 and monomeric gp35. Chaperone P38 is normally required for folding gp37 peptides into a P37 trimer; however, a temperature-sensitive mutation in T4 (ts3813) that suppresses this requirement at 30 degrees C but not at 42 degrees C was found in gene 37 (R. J. Bishop and W. B. Wood, Virology 72:244-254, 1976). Sequencing of the temperature-sensitive mutant revealed a 21-bp duplication of wild-type gene 37 inserted into its C-terminal portion (S. Hashemolhosseini et al., J. Mol. Biol. 241:524-533, 1994). We noticed that the 21-amino-acid segment encompassing this duplication in the ts3813 mutant has a sequence typical of a coiled coil and hypothesized that its extension would relieve the temperature sensitivity of the ts3813 mutation. To test our hypothesis, we crossed the T4 ts3813 mutant with a plasmid encoding an engineered pentaheptad coiled coil. Each of the six mutants that we examined retained two amber mutations in gene 38 and had a different coiled-coil sequence varying from three to five heptads. While the sequences varied, all maintained the heptad-repeating coiled-coil motif and produced plaques at up to 50 degrees C. This finding strongly suggests that the coiled-coil motif is a critical factor in the folding of gp37. The presence of a terminal coiled-coil-like sequence in the tail fiber genes of 17 additional T-even phages implies the conservation of this mechanism. The increased melting temperature should be useful for "clamps" to initiate the folding of trimeric beta-helices in vitro and as an in vivo screen to identify, sequence, and characterize trimeric coiled coils.  相似文献   

9.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

10.
Ott V  Koch J  Späte K  Morbach S  Krämer R 《Biochemistry》2008,47(46):12208-12218
The glycine betaine carrier BetP from Corynebacterium glutamicum responds to changes in external osmolality by regulation of its transport activity, and the C-terminal domain was previously identified to be involved in this process. Here we investigate the structural requirements of the C-terminal domain for osmoregulation as well as interacting domains that are relevant for intramolecular signal transduction in response to osmotic stress. For this purpose, we applied a proline scanning approach and amino acid replacements other than proline in selected positions. To analyze the impact of the surrounding membrane, BetP mutants were studied in both C. glutamicum and Escherichia coli, which strongly differ in their phospholipid composition. A region of approximately 25 amino acid residues within the C-terminal domain with a high propensity for alpha-helical structure was found to be essential in terms of its conformational properties for osmodependent regulation. The size of this region was larger in E. coli membranes than in the highly negatively charged C. glutamicum membranes. As a novel aspect of BetP regulation, interaction of the C-terminal domain with one of the cytoplasmic loops as well as with the N-terminal domain was shown to be involved in osmosensing and/or osmoregulation. These results support a functional model of BetP activation that involves the C-terminal domain shifting from interaction with the membrane to interaction with intramolecular domains in response to osmotic stress.  相似文献   

11.
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.  相似文献   

12.
Gene 18 of bacteriophage T4 encodes the contractile protein of the tail sheath. Previous work has shown that the full-length recombinant gene product (gp) 18 of 658 amino acid residues assembles in Escherichia coli cells into a long polysheath structure. However, the gp18 mutants truncated at the N-termini form insoluble aggregates similar to inclusion bodies. In this study, six plasmid vectors expressing the recombinant gp18 proteins truncated at the C-termini have been constructed. The CDelta58, CDelta129, CDelta152, C[g1]72, CDelta248, and CDelta287 proteins contain 600, 529, 506, 486, 410, and 371 residues of the full-length gp18 molecule, respectively. All the recombinant proteins were soluble and, except for the CDelta287 mutant, were assembled into polysheath-related structures. Electron microscopy of negatively stained purified proteins was performed and the resulting images were analyzed by computing their Fourier transforms. The CDelta58 and CDelta129 mutants, in addition to forming common contracted-type polysheath structures, assembled into thinner filaments that we called "noncontracted polysheaths" (NCP). The CDelta152, CDelta172, and CDelta248 proteins assembled into the NCP type only. Image processing showed that the NCP filaments significantly differ from both extended sheaths of T4 particle and polysheaths. The structure of the NCP filaments might correspond to the transitional helices postulated by Moody (J. Mol. Biol., 1973, 80, 613-636) that appeared during the process of tail contraction. Our results suggest that a short region at the C-terminus of the CDelta129 protein determines the contractile properties of the gp18 molecule. The shortest, the CDelta287 protein, does not assemble into regular structures, thus indicating that a sequence's stretch at the C-end of the CDelta248 mutant might be responsible for polymerization of gp18.  相似文献   

13.
Bacteriophages recognize and bind specific receptors to infect suitable hosts. Bacteriophage SPP1 targets at least two receptors of the Bacillus subtilis cell envelope, the glucosylated wall teichoic acids and the membrane protein YueB. Here, we identify a key virion protein for YueB binding and for the trigger of DNA ejection. Extracts from B. subtilis-infected cells applied to a YueB affinity matrix led to preferential capturing of gp21 from SPP1. To assess the significance of this interaction, we isolated mutant phages specifically affected in YueB binding. The mutants exhibited a very low inactivation rate and a strong defect to eject DNA when challenged with YueB. The phenotype correlated with presence of a single amino acid substitution in the gp21 carboxyl terminus, defining a region involved in YueB binding. Immunoelectron microscopy located the gp21 N-terminus in the SPP1 cap and probably in the adjacent tail spike region whereas the gp21 C-terminus was mapped further down in the spike structure. Antibodies against this part of gp21 interfered with the interaction of YueB with SPP1 and triggered DNA ejection. The gp21 C-terminal region thus plays a central role in two early key events that commit the virus to deliver its genome into host cells.  相似文献   

14.
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long and six short tail fibres. After at least three long tail fibres have bound, short tail fibres extend and bind irreversibly to the core region of the host cell lipopolysaccharide (LPS), serving as inextensible stays during penetration of the cell envelope by the tail tube. The short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12). The 1.9 A crystal structure of a heat and protease-stable fragment of gp12 reveals three new folds: a central right-handed triple beta-helix, a globular C-terminal domain containing a beta-sandwich and an N-terminal beta-structure reminiscent of but different from the adenovirus triple beta-spiral. The centre of the C-terminal domain shows weak homology to gp11, a trimeric protein connecting the short fibre to the base-plate, suggesting that the trimerisation motifs of gp11 and gp12 are similar. Repeating sequence motifs suggest that the N-terminal beta-structure extends further towards the N terminus and is conserved in the long tail fibre proteins gp34 and gp37.  相似文献   

15.
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a family of tetrahydropterin-dependent aromatic amino acid hydroxylases. It has been proposed that each hydroxylase is composed of a conserved C-terminal catalytic domain and an unrelated N-terminal regulatory domain. Of the three, only tyrosine hydroxylase is activated by heparin and binds to heparin-Sepharose. A series of N-terminal deletion mutants of tyrosine hydroxylase has been expressed in Escherichia coli to identify the heparin-binding site. The mutants lacking the first 32 or 68 amino acids bind to heparin-Sepharose. The mutant lacking 76 amino acids binds somewhat to heparin-Sepharose and the proteins lacking 88 or 128 do not bind at all. Therefore, an important segment of the heparin-binding site must be composed of the region from residues 76 to 90. All of the deletion mutants are active, and the Michaelis constants for pterins and tyrosine are similar among all the mutant and wild-type enzymes.  相似文献   

16.
We improved the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by an in vivo evolutionary technique using an extreme thermophile, Thermus thermophilus, as a host cell. The leuB gene encoding B. subtilis 3-isopropylmalate dehydrogenase was integrated into the chromosome of a leuB-deficient strain of T. thermophilus. The resulting transformant showed a leucine-autotrophy at 56 degrees C but not at 61 degrees C and above. Phenotypically thermostabilized strains that can grow at 61 degrees C without leucine were isolated from spontaneous mutants. Screening temperature was stepwise increased from 61 to 66 and then to 70 degrees C and mutants that showed a leucine-autotrophic growth at 70 degrees C were obtained. DNA sequence analyses of the leuB genes from the mutant strains revealed three stepwise amino acid replacements, threonine-308 to isoleucine, isoleucine-95 to leucine, and methionine-292 to isoleucine. The mutant enzymes with these amino acid replacements were more stable against heat treatment than the wild-type enzyme. Furthermore, the triple-mutant enzyme showed significantly higher specific activity than that of the wild-type enzyme.  相似文献   

17.
Lymphocyte interactions with high endothelial venules (HEV) during extravasation into lymphoid tissues involve an 85-95 kd class of lymphocyte surface glycoprotein(s), gp90Hermes (CD44). We report here the cloning of cDNA for gp90Hermes expressed in a mucosal HEV-binding B lymphoblastoid cell line, KCA. Northern hybridization revealed the presence of three invariant RNA bands at 1.5, 2.2, and 4.5 kb in mucosal HEV-, lymph node HEV-, or dual-binding cells. The deduced amino acid sequence predicts a mature protein with a C-terminal cytoplasmic tail, a hydrophobic transmembrane domain of 23 amino acids, and an N-terminal extracellular region of 248 amino acids. A proximal extracellular domain is the probable region of O-glycosylation and chondroitin sulfate linkage and displays at least two of the three immunodominant epitope clusters of native gp90Hermes. A distal region contains the majority of potential N-glycosylation sites and cysteines, and exhibits a striking homology to tandemly repeated domains of the cartilage link and proteoglycan core proteins. No significant similarities were found to the immunoglobulin, integrin, or cadherin gene families. Thus gp90Hermes represents a novel class of integral membrane protein involved in lymphocyte-endothelial cell interactions and lymphocyte homing.  相似文献   

18.
Escherichia coli YibP protein (47.4 kDa) has a membrane-spanning signal at the N-terminal region, two long coiled-coil regions in the middle part, and a C-terminal globular domain, which involves amino acid sequences homologous to the peptidase M23/M37 family. A yibP disrupted mutant grows in rich medium at 37 degrees C but not at 42 degrees C. In the yibP null mutant, cell division and FtsZ ring formation are inhibited at 42 degrees C without SOS induction, resulting in filamentous cells with multiple nucleoids and finally in cell lysis. Five percent betaine suppresses the temperature sensitivity of the yibP disrupted mutation. The mutant has the same sensitivity to drugs, such as nalidixic acid, ethidium bromide, ethylmethane sulfonate, and sodium dodecyl sulfate, as the parental strain. YibP protein is recovered in the inner membrane and cytoplasmic fractions, but not in the outer membrane fraction. Results suggest that the coiled-coil regions and the C-terminal globular domain of YibP are localized in the cytoplasmic space, not in the periplasmic space. Purified YibP has a protease activity that split the substrate beta-casein.  相似文献   

19.
We report the identification of a number of mutations that result in amino acid replacements (and their phenotypic characterization) in either the MogA-like domain or domains 2 and 3 of the MoeA-like region of the Aspergillus nidulans cnxE gene. These domains are functionally required since mutations that result in amino acid substitutions in any one domain lead to the loss or to a substantial reduction in all three identified molybdoenzyme activities (i.e., nitrate reductase, xanthine dehydrogenase, and nicotinate hydroxylase). Certain cnxE mutants that show partial growth with nitrate as the nitrogen source in contrast do not grow on hypoxanthine or nicotinate. Complementation between mutants carrying lesions in the MogA-like domain or the MoeA-like region, respectively, most likely occurs at the protein level. A homology model of CnxE based on the dimeric structure of E. coli MoeA is presented and the position of inactivating mutations (due to amino acid replacements) in the MoeA-like functional region of the CnxE protein is mapped to this model. Finally, the activity of nicotinate hydroxylase, unlike that of nitrate reductase and xanthine dehydrogenase, is not restored in cnxE mutants grown in the presence of excess molybdate.  相似文献   

20.
Complete sequence determination of gene 18 encoding the tail sheath protein was carried out mainly by the Maxam-Gilbert method. Approximately 40 peptides contained in a tryptic digest and a lysyl endopeptidase digest of gp 18 were isolated by reversed-phase high-performance liquid chromatography. All the peptides were identified along the nucleotide sequence of gene 18 based on the amino acid compositions. These peptides cover 88% of the total primary structure. Furthermore, the amino acid sequences of 9 of the 40 peptides were determined by a gas-phase protein sequencer; one of them turned to be the N-terminal one. The C-terminal peptide in the tryptic digest was isolated from the unadsorbed fraction of affinity chromatography on immobilized anhydrotrypsin and the amino acid sequence was also determined. Thus, the complete primary structure of gp 18 was determined; it has 658 amino acid residues and a molecular weight of 71,160.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号