首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low survival time and diminished infectivity by entomopathogenic nematodes (EPNs) from granular formulations limit their efficiency against agricultural insect pests. This study determined the benefit of pre-acclimating infective juveniles (IJs) of Steinernema glaseri (NJ-43 strain) on extending their mean survival time (STm) in diatomaceous earth (DE) pellets and increasing their infectivity against Phyllophaga vetula. The IJs were reared in Galleria mellonella larvae placed in Petri dishes containing plaster of Paris (PP) or modified White traps (WTs). Pelletisation was performed in a machine operating on the principle of laminar flow using DE Celite® 209. Pellets were stored at room temperature (23?±?3°C) and high relative humidity (96–100%). IJs harvested from WTs between the 3rd and the 5th days after the onset of emergence were more infective on P. vetula and pre-acclimation of S. glaseri in PP increased significantly its STm in the pellets; from 23.1 to 34.5 days, compared with non-pre-acclimatised IJs from WTs. However, juveniles with or without pre-acclimation formulated in DE pellets failed to achieve significant control of P. vetula. These results are discussed in light of the relationship between EPN survival and host infection by EPNs with possible effects of the formulation in DE pellets.  相似文献   

2.
Induction of anhydrobiosis and storage stability of entomopathogenic nematodes are influenced by moisture availability. Decreasing moisture content in diatomaceous earth (DE) pellets containing the Steinernema glaseri NJ-43 strain and its effect on survival time and infectivity of the nematode were determined. Pelletisation was performed in a vortex mixer, using DE Celite® 209 as the desiccant material. Pellets were stored at room temperature (23?±?2°C) and high relative humidity (96–100%). Nematode survival and infectivity against last instar greater wax moth, Galleria mellonella, were tested daily. Initial average and average equilibrium moisture content in pellets were 66.7% and 13.6%, respectively, and the infective juveniles mean survival time was 8.8 days. A moisture transfer model based on diffusion and evaporation was evaluated to predict moisture fluctuations within the pellets. We concluded that 84% of variation in S. glaseri infectivity on G. mellonella larvae was explained by the survival of the nematode, whereas 52% of variation in S. glaseri survival was explained by the loss of moisture from the pellets. The moisture transfer model achieved 78% reliability in predicting moisture content and fluctuations. Therefore, the mechanisms of moisture diffusion and evaporation from the surface to the surrounding atmosphere contribute significantly to moisture loss from the pellets.  相似文献   

3.
Limited shelf life of entomopathogenic nematodes severely restricts their use in biological control programs. In a series of experiments, the dehydration and rehydration response of Heterorhabditis bacteriophora infective juveniles (IJs) was investigated under a range of glycerol concentrations, temperatures and incubation periods. Based on the outcome of these initial studies, nematodes dehydrated using the optimal process were formulated in alginate granules to understand how these nematodes would undergo survival formulation in a model carrier. The highest rate of osmotically arrested IJs occurred in the 22% glycerol solution (98.06%). IJ recovery was considerably improved when dehydration was processed at 10% glycerol solution and 15°C. By trapping IJs in calcium alginate, depending on the adjuvants, the survival rate of IJs differed significantly. IJ state (dehydrated or non-dehydrated) and the addition of formaldehyde had a profound effect on IJ viability, though the severity of the effect varied was dependent on whether the IJs were alginate formulated. Among different formulations, the highest viability (84.18%) was observed where dehydrated IJs were formulated in alginate granules containing formaldehyde. The results showed that the concentration of osmotic solution not only determines the percentage of dehydrated IJs but also affect their subsequent recovery in an aqueous environment. Overall, the results indicate that the shelf life of formulated IJs is significantly affected by combination effects of a broad range of factors. Then understanding the interactive mode of actions of involved factors in formulation play a critical role in developing and introducing more efficient formulations.  相似文献   

4.
Infectivity of entomopathogenic nematode (EPN) Steinernema carpocapsae Pocheon strain on the green peach aphid Myzus persicae and its parasitic wasps (e.g., Aphidius colemani, Aphidius gifuensis and Diaeretiella rapae) was evaluated under laboratory conditions. Infective juveniles (IJs) of S. carpocapsae Pocheon strain had low infectivity against nymph and adult stages of M. persicae, showing 2% and 6.7% of mortality, respectively. Application of the EPNs had little effect on mummies caused by the three parasitoid species, allowing them to remain intact. No IJ invaded the host, regardless of EPN application rate. The parasitoid emergence from mummies ranged from 80% to 85% in the presence of EPN while 79–86% was recorded in the absence of EPN. However, the presence of the IJs reduced oviposition by the three parasitoid species, decreasing the rate up to 59% when the nematodes were applied before parasitoid release, while little difference in oviposition was observed when nematodes were applied after parasitoid release.  相似文献   

5.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

6.
7.
Entomopathogenic nematode species differ in their optimum storage temperature; therefore, we conducted a study on the survival and infectivity of the recently described Steinernema innovationi from South Africa at five storage temperatures (5°C, 10°C, 15°C, 20°C, and 25°C) over 84 d using 20,000 infective juveniles (IJ) in 25 ml aqueous suspension containing 0.1% formalin. Our results showed that survival was highest and most stable at 15°C, ranging from 84% to 88% after 84 d. Infectivity of IJ against Galleria mellonella larvae was >90% for all temperatures except for 5°C at which survival decreased to 10% after 84 d. In addition, we stored 2.5 million IJ on a sponge formulation in 15 ml of 0.1% formalin solution for 84 d at the optimum 15°C followed by 2 wk storage at 25°C. Storage of the IJ on a sponge formulation for 14 d at 25°C post 15°C storage for 84 d did not have a detrimental effect on IJ survival (87%) or infectivity to G. mellonella (95%).  相似文献   

8.
The application of entomopathogenic nematodes (EPN) is generally done using standard spray application techniques. However, in contrast to chemical pesticides, these biological antagonists must remain viable during and after the application process. For the application of EPN, a good agitation system is indispensable as the nematodes tend to sediment fast in a spray tank without agitation. Three agitation systems, viz. mechanical, pneumatic and hydraulic agitation were tested for their ability to keep Steinernema carpocapsae (Rhabditida: Steinernematidae) suspended in an undamaged way. Hydraulic agitation was tested using a centrifugal and a diaphragm pump. Nematode damage was quantified based on viability and infectivity of the EPN. The ability of the agitation system to keep the nematodes in suspension was examined by comparing the nematode concentration observed in the samples taken at different agitation times. Only the hydraulic agitation using the centrifugal pump damaged the nematodes. After 120 min of recirculation, only 19.3% of the nematodes survived. Infectivity was even reduced to 0%. An additional experiment revealed that the temperature rise, from 21.7 to 45.4°C, was responsible for the observed nematode damage. The concentration measurements showed that the pneumatic agitation was unstable. Agitation during 120 min using the other agitation systems resulted in a significant loss of nematodes at 15 cm above the spray tank bottom. In conclusion, mechanical and hydraulic agitation using a diaphragm pump can be recommended when S. carpocapsae is applied, although attention should be paid to possible nematode loss during application.  相似文献   

9.
Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.  相似文献   

10.
Extruded pellets containing activated carbon (AC) can be used to sow native seeds while simultaneously applying herbicide to control invasive species. Incorporating AC in pellets has been demonstrated to protect native seeds; however, there may be unintended detrimental impacts to seedling emergence. We aimed to optimize seed position within pellets to maximize emergence and survival of the perennial shrub Jacksonia furcellata. Seeds were positioned at 2 mm (top), 6 mm (middle), and 12 mm (bottom) within pellets (with or without AC), sown on or below the soil surface, and compared to non-pelleted seeds sown under the soil surface in the equivalent positions (2, 6, and 12 mm depth). Trays were treated with a pre-emergent herbicide (Simazine) or left unsprayed. Emergence (without herbicide) was significantly higher from seeds positioned at the bottom of pellets without AC sown on the soil surface (70%), compared to non-pelleted seeds sown at the bottom (12 mm below the soil surface; 57%). However, emergence was inhibited when seeds were positioned in the middle (6 mm) of pellets with AC (32%). When treated with Simazine, survival was highest from seeds positioned at the bottom of pellets with AC (60%), compared to pellets without AC (15%) and non-pelleted seeds sown at the bottom (12 mm below the soil surface; 15%). Jacksonia furcellata seeds positioned at the bottom of pellets, sown on the soil surface, shows promise to minimize negative impacts to emergence, and maximize herbicide protection. Further testing with additional species is required to refine pellet production (e.g. recipe, extrusion, and shape) for optimal emergence.  相似文献   

11.
Steinernema colombiense, an entomopathogenic nematode species (EPN) was grown in two types of orbitally shaken flasks at 130?rpm and 28°C, containing 10 or 20?mL, respectively of a complex culture medium with an initial EPN-concentration of 1,000 Infective Juveniles (IJ)/mL. At the 10th day, the EPN-concentration was 58,771 individuals/mL with 87% of them in the IJ stage. No significant differences were found between the EPN growth kinetics in both types of flasks. The nematode-population growth was modelled by a re-parameterized Gompertz equation of three-parameters with best-fit values of 3.8 days for the lag time, 33.8 day-1 for the maximum growth rate, and 57.3 (dimensionless) for the maximum asymptotic growth.  相似文献   

12.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

13.
Laboratory experiments were conducted to study non-target effects of augmenting entomopathogenic nematode (EPN)communities in soil. When raw soil from a citrus orchard was augmented with either 2,000 Steinernema riobrave or S. diaprepesi, fewer EPN (P ≤ 0.05) survived if the soil had also been treated with 2,000 S. riobrave 7 d earlier (i.e., two augmentation events rather than one). EPN survival was unaffected by treatment (P ≤ 0.05) in soil that was air-dried to disrupt antagonist activity prior to the experiment. When S. diaprepesi, S. riobrave, Heterorhabditis zealandica or no EPN were added to raw soil and S. diaprepesi was added 5 d later, the survival of both S. diaprepesi and of total EPN was greater (P ≤ 0.05) in soil that received no pretreatment than in soilpre treated with S. riobrave. Pretreatment of soil with H. zealandica or S. diaprepesi had less or no affect on survival of S. diaprepesi or total EPN. When nematodes were recovered from soil and placed on water agar, the number of S. diaprepesi that were killed by endoparasitic and trapping nematophagous fungi was greater (P ≤ 0.05) if soil was pretreated with steinernematid species than if the soil was not pretreated or was pretreated with H. zealandica. The adverse effects of pretreating soil on EPN survival were density dependent within a range of pretreatment dosages (20–100 IJ/cm2 soil surface), and the treatment effects required more time to become evident at lower than at higher dosages. These experiments suggest that non-target effects of augmenting the EPN community in soil vary among EPN species and have the potential to temporarily reduce EPN numbers below the natural equilibrium density.  相似文献   

14.
The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The “foraging strategy” paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs’ symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission.  相似文献   

15.
Previously, the combination of reduced rate of entomopathogenic nematodes (EPN) and fungus caused additive or synergistic mortality to third-instar black vine weevil (BVW), Otiorhynchus sulcatus. In this study, we examined this interaction in unheated glasshouses during winter and compared a combination of commercial formulation of a cold-tolerant EPN, S. kraussei (Nemasys L?) and fungus Metarhizium anisopliae strain V275 against overwintering third-instar BVW. The combination of M. anisopliae with S. kraussei at a rate of 1×1010 conidia+250,000 nematodes/growbag resulted in additive or synergistic effects, providing 100% control of overwintering larvae.  相似文献   

16.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

17.
Adequate moisture levels are required for nematode survival and subsequent efficacy as entomopathogens. Formulation of nematodes aimed at aboveground applications may assist in maintaining such moisture levels. In this study, we report the effects of a superabsorbent polymer formulation, Zeba® on the performance of an entomopathogenic nematode, Heterorhabditis zealandica Poinar, for controlling diapausing codling moth, Cydia pomonella (L.) larvae in cryptic habitats on trees. Water activity (aw-value) on bark was considered to be an indication of moisture levels on trees in cryptic habitats where codling moth larvae are known to occur, thereby influencing nematode efficacy. H. zealandica was only able to infect codling moth larvae at aw≥0.92, with aw50=0.94 and aw90=0.96. Laboratory experiments in which nematode concentration was investigated indicated a positive linear relationship between the concentration of nematodes applied and the level of control obtained, with the highest level of mortality recorded at 80 IJs/larva, requiring at least 4 h of conditions conducive to nematode activity to ensure infectivity and subsequent efficacy. Further experimentation showed that the use of the Zeba formulation, together with the nematodes, improved the level of control obtained at 60% and 80% RH in the laboratory and that it also enhanced the survival and infection-ability of the nematodes in the field. The study conclusively illustrates that the tested formulation assisted in maintaining adequate moisture levels on the application substratum, as required for nematode survival and subsequent efficacy.  相似文献   

18.
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.  相似文献   

19.
The infective juveniles (IJs) of Steinernema carpocapsae‘All’ were osmotically stressed by a mixture of ionic (fortified artificial seawater) and non‐ionic (3.2 mol/L glycerol) solutions to establish a method for osmotic storage of entomopathogenic nematodes. Seven combinations (termed solution A to G) with different proportions of these two solutions were tested, with sterile extra pure water (sepH2O, termed solution H) as a control. The mortality of the IJs at a concentration of 5 × 105 IJ/mL in the solutions A to G, and H were 13.2%, 16.2%, 16.7%, 13.5%, 25.2%, 31.6%, 44.6%, and 1.0%, respectively, after 21 days storage at 25°C. Most of the IJs shrunk and stopped motility after 6–9 hours incubation at 25°C in solutions A to D. Based on the results, solutions A to D and H were chosen to further test the osmotic survival of the IJs at different IJ concentrations (5 × 105, 2.5 × 105, 2 000 IJ/mL) and incubation temperature (30°C, 25°C, 10°C). The resulting IJs were exposed to a high temperature assay (45°C for 4 h, HTA). Osmotically stressed IJs showed improved heat tolerance. The mortality of the IJs increased with the increasing concentrations of the test IJs and the storage temperatures after exposing to the HTA. More than 88.4%, 62.3% or 2.4% of the treated IJs died at the above three IJ concentrations, respectively. At the three IJ concentrations (2 000 IJs/mL, 2.5 × 105 IJs/mL or 5 × 105 IJs/mL), the highest mortality was recorded in solution D (11.6%, 85.9% or 98.0%, respectively), and the lowest mortality in solution B (2. 4%, 62.3% or 86.6%, respectively). No untreated IJs survived after the heat treatment. During 42 days storage at 10°C, the IJs mortality in the solutions A to D and H were 7.19%, 5.97%, 4.41%, 4.34%, and 4.34% respectively, and showed no significant differences. In conclusion, osmotic treatment of the IJs of S. carpocapsae‘All’ in a mixture of ionic and non‐ionic solutions enhances the heat tolerance. The mortality of the IJs after HTA increased with the increasing concentrations of the test IJs and the storage temperatures after exposure to the HTA. The result is promising for the osmotic storage of the entomopathogenic nematodes.  相似文献   

20.
The seasonal dynamics of entomopathogenic nematodes (EPNs) of the genus Steinernema and Heterorhabditis were studied during one season in meadow and oak wood habitats, in the vicinity of Ceské Budejovice, Czech Republic. The influences of soil temperature, moisture, and abundance of suitable hosts on EPN dynamics were investigated. The host range of these nematodes, in both habitats was also observed. A total of four EPN species were found in both habitats. Steinernema affine was the dominant species both in oak wood and in meadow. Additionally, the oak wood habitat was inhabited by S. kraussei and S. weiseri; the meadow habitat by Heterorhabditis bacteriophora. The mean abundance of total EPN community was 28,000ind./m(2) in oak wood and 11,000ind./m(2) in meadow. The seasonal dynamics of entomopathogenic nematodes in both habitats were characterized by high nematode densities in the beginning of the season, followed by a rapid decrease, and then stabilization. EPN abundances did not show any apparent correlation with soil temperature and moisture, but they were negatively correlated with the abundance of suitable insect hosts. Inter- and intraspecific competition for limited nutrients (hosts) probably played a major role in EPN seasonal dynamics. Broad host range of entomopathogenic nematodes in both habitats was predominantly represented by dipteran and coleopteran larvae. Most common hosts belonged to the families Asilidae, Bibionidae, and Empididae (Diptera), as well as Carabidae and Curculionidae (Coleoptera).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号