首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capturing complex dependence structures between outcome variables (e.g., study endpoints) is of high relevance in contemporary biomedical data problems and medical research. Distributional copula regression provides a flexible tool to model the joint distribution of multiple outcome variables by disentangling the marginal response distributions and their dependence structure. In a regression setup, each parameter of the copula model, that is, the marginal distribution parameters and the copula dependence parameters, can be related to covariates via structured additive predictors. We propose a framework to fit distributional copula regression via model-based boosting, which is a modern estimation technique that incorporates useful features like an intrinsic variable selection mechanism, parameter shrinkage and the capability to fit regression models in high-dimensional data setting, that is, situations with more covariates than observations. Thus, model-based boosting does not only complement existing Bayesian and maximum-likelihood based estimation frameworks for this model class but rather enables unique intrinsic mechanisms that can be helpful in many applied problems. The performance of our boosting algorithm for copula regression models with continuous margins is evaluated in simulation studies that cover low- and high-dimensional data settings and situations with and without dependence between the responses. Moreover, distributional copula boosting is used to jointly analyze and predict the length and the weight of newborns conditional on sonographic measurements of the fetus before delivery together with other clinical variables.  相似文献   

2.
Variable selection is critical in competing risks regression with high-dimensional data. Although penalized variable selection methods and other machine learning-based approaches have been developed, many of these methods often suffer from instability in practice. This paper proposes a novel method named Random Approximate Elastic Net (RAEN). Under the proportional subdistribution hazards model, RAEN provides a stable and generalizable solution to the large-p-small-n variable selection problem for competing risks data. Our general framework allows the proposed algorithm to be applicable to other time-to-event regression models, including competing risks quantile regression and accelerated failure time models. We show that variable selection and parameter estimation improved markedly using the new computationally intensive algorithm through extensive simulations. A user-friendly R package RAEN is developed for public use. We also apply our method to a cancer study to identify influential genes associated with the death or progression from bladder cancer.  相似文献   

3.
Tree-based models are a popular tool for predicting a response given a set of explanatory variables when the regression function is characterized by a certain degree of complexity. Sometimes, they are also used to identify important variables and for variable selection. We show that if the generating model contains chains of direct and indirect effects, then the typical variable importance measures suggest selecting as important mainly the background variables, which have a strong indirect effect, disregarding the variables that directly influence the response. This is attributable mainly to the variable choice in the first steps of the algorithm selecting the splitting variable and to the greedy nature of such search. This pitfall could be relevant when using tree-based algorithms for understanding the underlying generating process, for population segmentation and for causal inference.  相似文献   

4.
Buckley–James (BJ) model is a typical semiparametric accelerated failure time model, which is closely related to the ordinary least squares method and easy to be constructed. However, traditional BJ model built on linearity assumption only captures simple linear relationships, while it has difficulty in processing nonlinear problems. To overcome this difficulty, in this paper, we develop a novel regression model for right-censored survival data within the learning framework of BJ model, basing on random survival forests (RSF), extreme learning machine (ELM), and L2 boosting algorithm. The proposed method, referred to as ELM-based BJ boosting model, employs RSF for covariates imputation first, then develops a new ensemble of ELMs—ELM-based boosting algorithm for regression by ensemble scheme of L2 boosting, and finally, uses the output function of the proposed ELM-based boosting model to replace the linear combination of covariates in BJ model. Due to fitting the logarithm of survival time with covariates by the nonparametric ELM-based boosting method instead of the least square method, the ELM-based BJ boosting model can capture both linear covariate effects and nonlinear covariate effects. In both simulation studies and real data applications, in terms of concordance index and integrated Brier sore, the proposed ELM-based BJ boosting model can outperform traditional BJ model, two kinds of BJ boosting models proposed by Wang et al., RSF, and Cox proportional hazards model.  相似文献   

5.
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero‐inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation‐maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open‐source R package mpath .  相似文献   

6.
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent.  相似文献   

7.
Statistical models are simple mathematical rules derived from empirical data describing the association between an outcome and several explanatory variables. In a typical modeling situation statistical analysis often involves a large number of potential explanatory variables and frequently only partial subject-matter knowledge is available. Therefore, selecting the most suitable variables for a model in an objective and practical manner is usually a non-trivial task. We briefly revisit the purposeful variable selection procedure suggested by Hosmer and Lemeshow which combines significance and change-in-estimate criteria for variable selection and critically discuss the change-in-estimate criterion. We show that using a significance-based threshold for the change-in-estimate criterion reduces to a simple significance-based selection of variables, as if the change-in-estimate criterion is not considered at all. Various extensions to the purposeful variable selection procedure are suggested. We propose to use backward elimination augmented with a standardized change-in-estimate criterion on the quantity of interest usually reported and interpreted in a model for variable selection. Augmented backward elimination has been implemented in a SAS macro for linear, logistic and Cox proportional hazards regression. The algorithm and its implementation were evaluated by means of a simulation study. Augmented backward elimination tends to select larger models than backward elimination and approximates the unselected model up to negligible differences in point estimates of the regression coefficients. On average, regression coefficients obtained after applying augmented backward elimination were less biased relative to the coefficients of correctly specified models than after backward elimination. In summary, we propose augmented backward elimination as a reproducible variable selection algorithm that gives the analyst more flexibility in adopting model selection to a specific statistical modeling situation.  相似文献   

8.
Biological networks, such as genetic regulatory networks and protein interaction networks, provide important information for studying gene/protein activities. In this paper, we propose a new method, NetBoosting, for incorporating a priori biological network information in analyzing high dimensional genomics data. Specially, we are interested in constructing prediction models for disease phenotypes of interest based on genomics data, and at the same time identifying disease susceptible genes. We employ the gradient descent boosting procedure to build an additive tree model and propose a new algorithm to utilize the network structure in fitting small tree weak learners. We illustrate by simulation studies and a real data example that, by making use of the network information, NetBoosting outperforms a few existing methods in terms of accuracy of prediction and variable selection.  相似文献   

9.
Analysis of molecular data promises identification of biomarkers for improving prognostic models, thus potentially enabling better patient management. For identifying such biomarkers, risk prediction models can be employed that link high-dimensional molecular covariate data to a clinical endpoint. In low-dimensional settings, a multitude of statistical techniques already exists for building such models, e.g. allowing for variable selection or for quantifying the added value of a new biomarker. We provide an overview of techniques for regularized estimation that transfer this toward high-dimensional settings, with a focus on models for time-to-event endpoints. Techniques for incorporating specific covariate structure are discussed, as well as techniques for dealing with more complex endpoints. Employing gene expression data from patients with diffuse large B-cell lymphoma, some typical modeling issues from low-dimensional settings are illustrated in a high-dimensional application. First, the performance of classical stepwise regression is compared to stage-wise regression, as implemented by a component-wise likelihood-based boosting approach. A second issues arises, when artificially transforming the response into a binary variable. The effects of the resulting loss of efficiency and potential bias in a high-dimensional setting are illustrated, and a link to competing risks models is provided. Finally, we discuss conditions for adequately quantifying the added value of high-dimensional gene expression measurements, both at the stage of model fitting and when performing evaluation.  相似文献   

10.
Statistical assessment of candidate gene effects can be viewed as a problem of variable selection and model comparison. Given a certain number of genes to be considered, many possible models may fit to the data well, each including a specific set of gene effects and possibly their interactions. The question arises as to which of these models is most plausible. Inference about candidate gene effects based on a specific model ignores uncertainty about model choice. Here, a Bayesian model averaging approach is proposed for evaluation of candidate gene effects. The method is implemented through simultaneous sampling of multiple models. By averaging over a set of competing models, the Bayesian model averaging approach incorporates model uncertainty into inferences about candidate gene effects. Features of the method are demonstrated using a simulated data set with ten candidate genes under consideration.  相似文献   

11.
Xu S 《Biometrics》2007,63(2):513-521
Summary .   The genetic variance of a quantitative trait is often controlled by the segregation of multiple interacting loci. Linear model regression analysis is usually applied to estimating and testing effects of these quantitative trait loci (QTL). Including all the main effects and the effects of interaction (epistatic effects), the dimension of the linear model can be extremely high. Variable selection via stepwise regression or stochastic search variable selection (SSVS) is the common procedure for epistatic effect QTL analysis. These methods are computationally intensive, yet they may not be optimal. The LASSO (least absolute shrinkage and selection operator) method is computationally more efficient than the above methods. As a result, it has been widely used in regression analysis for large models. However, LASSO has never been applied to genetic mapping for epistatic QTL, where the number of model effects is typically many times larger than the sample size. In this study, we developed an empirical Bayes method (E-BAYES) to map epistatic QTL under the mixed model framework. We also tested the feasibility of using LASSO to estimate epistatic effects, examined the fully Bayesian SSVS, and reevaluated the penalized likelihood (PENAL) methods in mapping epistatic QTL. Simulation studies showed that all the above methods performed satisfactorily well. However, E-BAYES appears to outperform all other methods in terms of minimizing the mean-squared error (MSE) with relatively short computing time. Application of the new method to real data was demonstrated using a barley dataset.  相似文献   

12.
A working guide to boosted regression trees   总被引:33,自引:0,他引:33  
1. Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2. This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3. Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4. The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel (Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.  相似文献   

13.
Semiparametric Regression in Size-Biased Sampling   总被引:1,自引:0,他引:1  
Ying Qing Chen 《Biometrics》2010,66(1):149-158
Summary .  Size-biased sampling arises when a positive-valued outcome variable is sampled with selection probability proportional to its size. In this article, we propose a semiparametric linear regression model to analyze size-biased outcomes. In our proposed model, the regression parameters of covariates are of major interest, while the distribution of random errors is unspecified. Under the proposed model, we discover that regression parameters are invariant regardless of size-biased sampling. Following this invariance property, we develop a simple estimation procedure for inferences. Our proposed methods are evaluated in simulation studies and applied to two real data analyses.  相似文献   

14.
Daniel R. Kowal  Bohan Wu 《Biometrics》2023,79(2):1520-1533
‘‘For how many days during the past 30 days was your mental health not good?” The responses to this question measure self-reported mental health and can be linked to important covariates in the National Health and Nutrition Examination Survey (NHANES). However, these count variables present major distributional challenges: The data are overdispersed, zero-inflated, bounded by 30, and heaped in 5- and 7-day increments. To address these challenges—which are especially common for health questionnaire data—we design a semiparametric estimation and inference framework for count data regression. The data-generating process is defined by simultaneously transforming and rounding (star ) a latent Gaussian regression model. The transformation is estimated nonparametrically and the rounding operator ensures the correct support for the discrete and bounded data. Maximum likelihood estimators are computed using an expectation-maximization (EM) algorithm that is compatible with any continuous data model estimable by least squares. star regression includes asymptotic hypothesis testing and confidence intervals, variable selection via information criteria, and customized diagnostics. Simulation studies validate the utility of this framework. Using star regression, we identify key factors associated with self-reported mental health and demonstrate substantial improvements in goodness-of-fit compared to existing count data regression models.  相似文献   

15.
A J Wright 《Heredity》1976,37(1):83-93
Methods of regression analysis of genotype-environment interaction are considered in relation to existing theory dealing with the relative efficiencies of selection for general or specific adaptation to the environment, and the choice of environments for assessment. The two alternative models is involving regression on to environmental effects (model 2) or genotypic effects (model 3) are equivalent when regression lines are concurrent, but are shown to be mutually exclusive when concurrence is absent...  相似文献   

16.
Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.  相似文献   

17.
Statistical models support medical research by facilitating individualized outcome prognostication conditional on independent variables or by estimating effects of risk factors adjusted for covariates. Theory of statistical models is well‐established if the set of independent variables to consider is fixed and small. Hence, we can assume that effect estimates are unbiased and the usual methods for confidence interval estimation are valid. In routine work, however, it is not known a priori which covariates should be included in a model, and often we are confronted with the number of candidate variables in the range 10–30. This number is often too large to be considered in a statistical model. We provide an overview of various available variable selection methods that are based on significance or information criteria, penalized likelihood, the change‐in‐estimate criterion, background knowledge, or combinations thereof. These methods were usually developed in the context of a linear regression model and then transferred to more generalized linear models or models for censored survival data. Variable selection, in particular if used in explanatory modeling where effect estimates are of central interest, can compromise stability of a final model, unbiasedness of regression coefficients, and validity of p‐values or confidence intervals. Therefore, we give pragmatic recommendations for the practicing statistician on application of variable selection methods in general (low‐dimensional) modeling problems and on performing stability investigations and inference. We also propose some quantities based on resampling the entire variable selection process to be routinely reported by software packages offering automated variable selection algorithms.  相似文献   

18.
We develop a new method for variable selection in a nonlinear additive function-on-scalar regression (FOSR) model. Existing methods for variable selection in FOSR have focused on the linear effects of scalar predictors, which can be a restrictive assumption in the presence of multiple continuously measured covariates. We propose a computationally efficient approach for variable selection in existing linear FOSR using functional principal component scores of the functional response and extend this framework to a nonlinear additive function-on-scalar model. The proposed method provides a unified and flexible framework for variable selection in FOSR, allowing nonlinear effects of the covariates. Numerical analysis using simulation study illustrates the advantages of the proposed method over existing variable selection methods in FOSR even when the underlying covariate effects are all linear. The proposed procedure is demonstrated on accelerometer data from the 2003–2004 cohorts of the National Health and Nutrition Examination Survey (NHANES) in understanding the association between diurnal patterns of physical activity and demographic, lifestyle, and health characteristics of the participants.  相似文献   

19.
Yuan Z  Ghosh D 《Biometrics》2008,64(2):431-439
Summary .   In medical research, there is great interest in developing methods for combining biomarkers. We argue that selection of markers should also be considered in the process. Traditional model/variable selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a novel model-combining algorithm for classification in biomarker studies. It works by considering weighted combinations of various logistic regression models; five different weighting schemes are considered in the article. The weights and algorithm are justified using decision theory and risk-bound results. Simulation studies are performed to assess the finite-sample properties of the proposed model-combining method. It is illustrated with an application to data from an immunohistochemical study in prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号