首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous publication we reported that PUFAs of the n-6 and n-3 series caused significant inhibition of synthesis of both PGE2 (28.4-92.8%) and PGF2 alpha (24.4-84.0%) in the oral squamous carcinoma cell line SCC-25. In this report we describe the inhibitory effect of the same acids on PG synthesis in normal human gingival fibroblasts under the same experimental conditions. It was found that a combination of EPA + DCHA (6:4), DCHA and ALA caused significant reduction in synthesis of PGE2 (10.1-87.8%) and PGF2 alpha (14.0-54.6%) at the four dose levels studied. The rank order of potency of acids in reduction of PG synthesis was: EPA + DCHA greater than DCHA greater than EPA greater than ALA greater than LA greater than DGLA greater than GLA. The data suggest that although PUFAs are effective inhibitors of PG synthesis by gingival fibroblasts and SCC-25, the fibroblast is less susceptible to the inhibitory effect of fatty acids.  相似文献   

2.
The dietary supplementation of normal guinea-pig diet with moderate levels of vegetable oils containing gamma-linolenic acid (GLA) is associated with elevation of epidermal levels of dihomo-gamma-linolenic acid (DGLA) and 15-hydroxyeicosatrienoic acid (15-lipoxygenase product of DGLA). However, supplementation of diet with higher level (70%) of GLA (GLA-70) resulted in marked decrease of epidermal level of DGLA. This nutritional observation prompted us to investigate in vitro the effects of varying concentrations of polyunsaturated fatty acids (PUFAs) on rat liver microsomal chain elongation of GLA into DGLA. Our data revealed that low concentrations of GLA (less than 100 microM) are stimulatory on the chain elongation while higher concentrations (greater than 100 microM) are inhibitory. The 18-carbon linoleic acid (precursor of GLA) was also markedly inhibitory at high concentrations. Interestingly, the longer chain 20-carbon n-3 PUFAs: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exerted negligible effect. The results suggest that increased systemic presence of free PUFAs, such as may occur in vivo after dietary intake of high n-6 PUFA-containing vegetable oils, may explain the decreased level of DGLA in the epidermal tissue.  相似文献   

3.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

4.
In the present study, the effect of increasing concentrations of palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1, n-9), linoleic (LA, C18:2n-6), docosahexaenoic (DHA, C22:6 n-3) and eicosapentaenoic (EPA, C20:5 n-3) acids on lymphocyte proliferation was investigated. The maximal non-toxic concentrations of these fatty acids for human lymphocytes in vitro were determined. It was also evaluated whether these fatty acids at non-toxic concentrations affect IL-2 induced lymphocyte proliferation and cell cycle progression. OA and LA at 25 microM increased lymphocyte proliferation and at higher concentrations (75 microM and 100 microM) inhibited it. Both fatty acids promoted cell death at 200 microM concentration. PA and SA decreased lymphocyte proliferation at 50 microM and promoted cell death at concentrations of 100 microM and above. EPA and DHA decreased lymphocyte proliferation at 25 and 50 microM being toxic at 50 and 100 microM, respectively. PA, SA, DHA and EPA decreased the stimulatory effect of IL-2 on lymphocyte proliferation, increasing the percentage of cells in G1 phase and decreasing the proportion of cells in S and G2/M phases. OA and LA caused an even greater pronounced effect. The treatment with all fatty acids increased neutral lipid accumulation in the cells but the effect was more pronounced with PA and DHA. In conclusion, PA, SA, DHA and EPA decreased lymphocyte proliferation, whereas OA and LA stimulated it at non-toxic concentrations.  相似文献   

5.
Chronic inflammation, mediated in large part by proinflammatory macrophage populations, contributes directly to the induction and perpetuation of metabolic diseases, including obesity, insulin resistance and type 2 diabetes. Polyunsaturated fatty acids (PUFAs) can have profound effects on inflammation through the formation of bioactive oxygenated metabolites called oxylipins. The objective of this study was to determine if exposure to the dietary omega-3 PUFA α-linolenic acid (ALA) can dampen the inflammatory properties of classically activated (M1-like) macrophages derived from the human THP-1 cell line and to examine the accompanying alterations in oxylipin secretion. We find that ALA treatment leads to a reduction in lipopolysaccharide (LPS)-induced interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production. Although ALA is known to be converted to longer-chain PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), DHA oxylipins were reduced overall by ALA treatment, as was LPS-induced secretion of EPA oxylipins. In contrast, we observed profound increases in oxylipins directly derived from ALA. Lipoxygenase products of linoleic acid were also dramatically increased, and LPS-induced production of AA oxylipins, particularly prostaglandin D2, was reduced. These results suggest that ALA may act to dampen the inflammatory phenotype of M1-like macrophages by a unique set of mechanisms distinct from those used by the long-chain omega-3 fatty acids EPA and DHA. Thus, there is strong rationale for investigating the functions of ALA oxylipins and lesser-known LA oxylipins since they hold promise as anti-inflammatory agents.  相似文献   

6.
The aim of study was to investigate an influence of nutritional deficiency and dietary addition of vit. B(2), B(6) and folic acid on PUFAs content in rats' serum and liver. Limitation of consumption full value diet to 50% of its previously determined daily consumption, enriched with m/a vitamins, significant decreased of linoleic (LA) and alpha-linolenic (ALA) acids as well as distinctly increased arachidonic (AA) and docosahexaenoic (DHA) acids content in serum in 30th day. In 60th day lower content of AA and DHA fatty acids was found. Nutrition with such diet, lasting 90 days caused decrease of LA content and increase of AA. Diet limitation to its 30% of daily consumption decreased of eicosapentaenoic acid (EPA) and DHA in the 30th day, while AA and DHA content was increased in the 60th day. Distinct decrease of AA content and increase of EPA content were found in the 90th day of experiment. Use of diets, with limited consumption to 50% caused increase of LA and ALA acids content while AA and DHA acids content were significantly decreased in the liver, in 90th day. Limited consumption supplemented diet to 30% caused in liver significant decrease of LA and increase of EPA acids content.  相似文献   

7.
Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.  相似文献   

8.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

9.
Myocardial ischemia-reperfusion activates the Na(+)/H(+) exchanger, which induces arrhythmias, cell damage, and eventually cell death. Inhibition of the exchanger reduces cell damage and lowers the incidence of arrhythmias after ischemia-reperfusion. The omega-3 polyunsaturated fatty acids (PUFAs) are also known to be cardioprotective and antiarrhythmic during ischemia-reperfusion challenge. Some of the action of PUFAs may occur via inhibition of the Na(+)/H(+) exchanger. The purpose of our study was to determine the capacity for selected PUFAs to alter cardiac sarcolemmal (SL) Na(+)/H(+) exchange. Cardiac membranes highly enriched in SL vesicles were exposed to 10-100 microM eicosapentanoic acid (EPA) or docosahexanoic acid (DHA). H(+)-dependent (22)Na(+) uptake was inhibited by 30-50% after treatment with > or =50 microM EPA or > or =25 microM DHA. This was a specific effect of these PUFAs, because 50 microM linoleic acid or linolenic acid had no significant effect on Na(+)/H(+) exchange. The SL vesicles did not exhibit an increase in passive Na(+) efflux after PUFA treatment. In conclusion, EPA and DHA can potently inhibit cardiac SL Na(+)/H(+) exchange at physiologically relevant concentrations. This may explain, in part, their known cardioprotective effects and antiarrhythmic actions during ischemia-reperfusion.  相似文献   

10.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

11.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

12.
Mortality and morbidity from coronary heart disease (CHD), diabetes mellitus (DM) and essential hypertension (HTN) are higher in people of South Asian descent than in other groups. There is evidence to believe that essential fatty acids (EFAs) and their metabolites may have a role in the pathobiology of CHD, DM and HTN. Fatty acid analysis of the plasma phospholipid fraction revealed that in CHD the levels of gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low, in patients with HTN linoleic acid (LA) and AA are low, and in patients with non-insulin dependent diabetes mellitus (NIDDM) and diabetic nephropathy the levels of dihomo-gamma-linolenic acid (DGLA), AA, alapha-linolenic acid (ALA) and DHA are low, all compared to normal controls. These results are interesting since DGLA, AA and EPA form precursors to prostaglandin E1, (PGE1), prostacyclin (PGI2), and PGI3, which are potent platelet anti-aggregators and vasodilators and can prevent thrombosis and atherosclerosis. Further, the levels of lipid peroxides were found to be high in patients with CHD, HTN, NIDDM and diabetic nephropathy. These results suggest that increased formation of lipid peroxides and an alteration in the metabolism of EFAs are closely associated with CHD, HTN and NIDDM in Indians. Since insulin resistance and hyperinsulinemia and features of obesity, NIDDM, HTN and CHD, diseases that are common in Indians, and as decreased insulin sensitivity is associated with decreased concentrations of polyunsaturated fatty acids (PUFAs) in skeletal muscle phospholipids and, possibly, in the plasma, the possibility is raised that changes in the metabolism of EFAs may have a fundamental role in the pathobiology of these conditions. If this is true, this suggests that supplementation of GLA, DGLA, AA, EPA and/or DHA may be indicated to prevent CHD, HTN and NIDDM in Indians.  相似文献   

13.
Studies suggested that in human adults, linoleic acid (LA) inhibits the biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), but their effects in growing subjects are largely unknown. We used growing pigs as a model to investigate whether high LA intake affects the conversion of n-3 LC-PUFA by determining fatty acid composition and mRNA levels of Δ5- and Δ6 desaturase and elongase 2 and -5 in liver and brain. In a 2 × 2 factorial arrangement, 32 gilts from eight litters were assigned to one of the four dietary treatments, varying in LA and α-linolenic acid (ALA) intakes. Low ALA and LA intakes were 0.15 and 1.31, and high ALA and LA intakes were 1.48 and 2.65 g/kg BW0.75 per day, respectively. LA intake increased arachidonic acid (ARA) in liver. ALA intake increased eicosapentaenoic acid (EPA) concentrations, but decreased docosahexaenoic acid (DHA) (all P < 0.01) in liver. Competition between the n-3 and n-6 LC-PUFA biosynthetic pathways was evidenced by reductions of ARA (>40%) at high ALA intakes. Concentration of EPA (>35%) and DHA (>20%) was decreased by high LA intake (all P < 0.001). Liver mRNA levels of Δ5- and Δ6 desaturase were increased by LA, and that of elongase 2 by both ALA and LA intakes. In contrast, brain DHA was virtually unaffected by dietary LA and ALA. Generally, dietary LA inhibited the biosynthesis of n-3 LC-PUFA in liver. ALA strongly affects the conversion of both hepatic n-3 and n-6 LC-PUFA. DHA levels in brain were irresponsive to these diets. Apart from Δ6 desaturase, elongase 2 may be a rate-limiting enzyme in the formation of DHA.  相似文献   

14.
In this study the effect of single and concomitantly added n-6 or n-3 polyunsaturated fatty acids (PUFAs) was investigated on human prostate cells. Data obtained from the single fatty acids (FAs) experiments showed that except for oleic acid (OA), arachidonic (AA) and linoleic acid (LA), which had very little (less than 10% cells dead) effect on the cells, an increase in dead cells was observed at physiological concentrations of, eicosapentaenoic acid (EPA), gamma-linolenic acid (GLA) and alpha-linolenic acid (ALA). However, this was not the case when combining these acids at physiological concentrations. A slight increase in cell death was only obtained with three combinations of ALA, namely with AA, OA, or GLA. Other combinations with ALA, such as with LA or EPA, had respectively no effect on cell number or increased the cell number by causing less cells to die. Other PUFAs combinations tested, did not show the three groups mentioned with ALA, but only the last two types, namely, no effect, or a decrease in the amount of cell death. The latter might mean that the FA combination had stimulated the cells, since a decrease in the amount of dead cells was observed. Therefore, it is concluded that the characteristics of combined FAs may differ from single FAs, which may explain some controversies in the literature and in response to treatments.  相似文献   

15.
Regulation of PUFA metabolism: pharmacological and toxicological aspects   总被引:1,自引:0,他引:1  
Levels of the long-chain polyunsaturated fatty acids (LCP) of the n-6 and n-3 series in animal plasma and cells are directly or indirectly dependent upon the intakes of either their precursors, the short-chain polyunsaturated fatty acids (SCP), linoleic (LA, 18:2 n-6) and alpha linolenic acid (ALA, 18:3 n-3), respectively, and/or of the preformed products (arachidonic, 20:4 n-6) and eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). We report here that pharmacological agents and cytotoxic compounds significantly affect the production of LCP from SCP in cultured cells. Using labelled substrates and radio HPLC separations, we observed that the potent hypocholesterolemic agent, simvastatin, activates the formation of AA from LA, mainly acting at the delta5 desaturation step, and increases also the mRNA levels, in cultured monocytic cells (THP-1). Elevation of AA occurs also in plasma lipids of hyperlipemic patients treated with statins (but not with fibrates). Conversely, oxysterols (mainly 7-beta-oxysterol), which are detected in circulating lipoproteins of rabbits on a hypercholesterolemic diet, potently inhibit the synthesis of AA from LA in hepatocytic cell lines (Hep-G2). At the same time plasma levels o AA are reduced vs controls, in spite of an identical intake of LA. Finally, on the basis of previous work showing reduced levels of LCP, mainly DHA, in the milk of cigarette-smoking mothers, we have observed that the incubation of human mammary gland cells with sera exposed to cigarette smoke results in marked inhibition of the production of DHA from ALA. The products in smoke responsible for this effect, are being identified through mass spectrometric techniques. In conclusion, pharmacological agents and toxic compounds, such as oxysterols and smoke products affect key steps in the synthesis of the LCP, major bioregulators in mammalian cells.  相似文献   

16.
The Δ9-elongase isolated from Thraustochytrium aureum, which contains a high level of polyunsaturated fatty acids (PUFAs), was demonstrated to be associated with the synthesis of C20 PUFAs. The TaELO gene contains a 825 bp ORF that encodes a protein of 274 amino acids that shares a high similarity with other PUFA elongases. The expression of the TaELO gene in Pichia pastoris resulted in the elongation of linoleic acid (LA, C18:2; n-6) and α-linolenic acid (ALA, C18:3; n-3) to eicosadienoic acid (EDA, C20:2; n-6) and eicosatrienoic acid (ETrA, C20:3; n-3), respectively. The endogenous conversion rate of LA and ALA to EDA and ETrA was 32.68 and 38.57%, respectively. In addition, TaELO was also able to synthesize eicosenoic acid (C20:1; n-9) from oleic acid (OA, C18:1; n-9), even though the conversion level was low (2.81%). Furthermore, TaELO was able to carry out the 6Δ-elongation of γ-linolenic acid (GLA, C18:3; n-6) to dihomo-γ-linolenic acid (DGLA, C20:3; n-6) and Δ5-elongation of eicosapentaenoic acid (EPA, C20:5; n-3) to docosapentaenoic acid (DPA, C22:5; n-3). The conversion rate of GLA to DGLA and EPA to DPA were 93 and 28.36%, respectively. The TaELO protein was confirmed to have multifunctional activities, such as Δ9, Δ6, and Δ5-elongations as well as the elongation of monounsaturated fatty acid.  相似文献   

17.
Previous studies suggest that the n-3 polyunsaturated fatty acids (PUFAs) eicosapenteinoic acid (EPA) and docosahexaenoic acid (DHA), constituents of fish oil, exert chemopreventive activity in colon cancer. One of the mechanisms involved is the facilitation of apoptosis. While a pro-apoptotic potential of n-3 PUFAs has been suggested, it is still unclear whether additional consumption of fish will also lead to comparable results. The aim of this study was to assess EPA- and DHA-mediated effects on endpoints of apoptosis and to use a novel biomarker-approach to measure modulation of apoptosis by consumption of fish. LT97 human colon adenoma and HT29 human colon adenocarcinoma cells were used to investigate modulation of apoptosis by EPA, DHA or linoleic acid (LA) using a set of endpoints, namely phosphatidylserine staining with Annexin-V (flow cytometry), Bcl-2 expression (Real-time RT–PCR), and Bid, caspase 3, 8 and 9 expression as well as PARP cleavage (Western Blot). Furthermore, faecal water (FW) of volunteers (n = 89) from a human trial intervening with fish was used to investigate changes in apoptosis by flow cytometry. DHA was more effective at inducing apoptosis than EPA. LT97 cells were more prone to DHA and EPA induced apoptosis than HT29 cells. Treatment of LT97 cells with FW from volunteers consuming fish did not result in any changes in apoptosis. Taken together, our results show that adenoma cells are highly susceptible to n-3 PUFA-induced apoptosis. By using a biomarker-approach (FW) to measure apoptosis-induction ex vivo no change in apoptosis after additional fish consumption was detectable.  相似文献   

18.
Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six essential fatty acids: AA, dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), eicosadienoic acid (EDA), and linoleic acid (LA). Three fatty acids were comparable substrates (AA, DGLA, and EPA), one was 5-fold slower (ALA), and two showed no reactivity with 12-LOX (EDA and LA). The bioactive lipid products resulting from 12-LOX oxidation of DGLA, 12-(S)-hydroperoxy-8Z,10E,14Z-eicosatrienoic acid [12(S)-HPETrE], and its reduced product, 12(S)-HETrE, resulted in significant attenuation of agonist-mediated platelet aggregation, granule secretion, αIIbβ3 activation, Rap1 activation, and clot retraction. Treatment with DGLA similarly inhibited PAR1-mediated platelet activation as well as platelet clot retraction. These observations are in surprising contrast to our recent work showing 12(S)-HETE is a prothrombotic bioactive lipid and support our hypothesis that the overall effect of 12-LOX oxidation of fatty acids in the platelet is dependent on the fatty acid substrates available at the platelet membrane.  相似文献   

19.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

20.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号