首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
3'-Hydroxy HT-2 toxin and T-2 tetraol, in vivo metabolites of T-2 toxin, were orally administered to Wistar rats, and four metabolites having a trichothec-9,12-diene nucleus, which were termed deepoxytrichothecenes, were newly found in the excreta. Their structures were confirmed as 3'-hydroxy-deepoxy HT-2, 3'-hydroxy-deepoxy T-2 triol, 15-acetyl-deepoxy T-2 tetraol, and deepoxy T-2 tetraol on the basis of mass and nuclear magnetic resonance spectroscopy. Resolution of T-2 metabolites and corresponding deepoxytrichothecenes by gas-liquid and thin-layer chromatography was also described.  相似文献   

2.
Gas chromatography-mass spectrometry was used to identify various T-2 toxin metabolites in chicken excreta and organs 18 h after intraperitoneal injection of the toxin. No trichothecenes were detected in the heart and kidneys, and only trace amounts were detected in the lungs. Most of the T-2 metabolites were found in the excreta, although considerable amounts were also found in the liver. In addition to the previously identified T-2 metabolites in chicken excreta (HT-2 toxin, 15 acetoxy T-2 tetraol, and T-2 tetraol), we found 3'-hydroxy HT-2 toxin (the major metabolite in excreta and organs), 3'-hydroxy T-2 toxin, 4-acetoxy T-2 tetraol, and trace amounts of 8-acetoxy T-2 tetraol, 3-acetoxy-3'hydroxy HT-2 toxin, and T-2 triol. Unmetabolized T-2 toxin and an unidentified isomer of T-2 tetraol monoacetate were also detected in the excreta. Most of the metabolites in the chicken are similar to those encountered in cultures of fungal species producing T-2 toxin. A comparison with T-2 toxin metabolism in the cow is also reported.  相似文献   

3.
Gas chromatography-mass spectrometry was used to identify various T-2 toxin metabolites in chicken excreta and organs 18 h after intraperitoneal injection of the toxin. No trichothecenes were detected in the heart and kidneys, and only trace amounts were detected in the lungs. Most of the T-2 metabolites were found in the excreta, although considerable amounts were also found in the liver. In addition to the previously identified T-2 metabolites in chicken excreta (HT-2 toxin, 15 acetoxy T-2 tetraol, and T-2 tetraol), we found 3'-hydroxy HT-2 toxin (the major metabolite in excreta and organs), 3'-hydroxy T-2 toxin, 4-acetoxy T-2 tetraol, and trace amounts of 8-acetoxy T-2 tetraol, 3-acetoxy-3'hydroxy HT-2 toxin, and T-2 triol. Unmetabolized T-2 toxin and an unidentified isomer of T-2 tetraol monoacetate were also detected in the excreta. Most of the metabolites in the chicken are similar to those encountered in cultures of fungal species producing T-2 toxin. A comparison with T-2 toxin metabolism in the cow is also reported.  相似文献   

4.
In vitro metabolism of T-2 toxin in rats.   总被引:6,自引:5,他引:1       下载免费PDF全文
T-2 toxin was rapidly converted in the 9,000 X g supernatant fraction of rat liver homogenate into HT-2 toxin, T-2 tetraol, and two unknown metabolites designated as TMR-1 and TMR-2. TMR-1 was characterized as 4-deacetylneosolaniol (15-acetoxy-3 alpha, 4 beta, 8 alpha-trihydroxy-12,13-epoxytrichothec-9-ene) by spectroscopic analyses. Since the same metabolites were also obtained from HT-2 toxin used as substrate, it was concluded that T-2 toxin was hydrolyzed preferentially at the C-4 position to give HT-2 toxin, which was then metabolized to T-2 tetraol via 4-deacetylneosolaniol. In addition to HT-2 toxin, 4-deacetylneosolaniol and T-2 tetraol, a trace amount of neosolaniol was transformed from T-2 toxin by rat intestinal strips. In vitro metabolic pathways for T-2 toxin in rats are proposed.  相似文献   

5.
The production of deepoxy metabolites of the trichothecene mycotoxins T-2 toxin and diacetoxyscirpenol, including deepoxy HT-2 (DE HT-2), deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol is described. The metabolites were prepared by in vitro fermentation with bovine rumen microorganisms under anaerobic conditions and purified by normal and reverse-phase high-pressure liquid chromatography. Capillary gas chromatographic retention times and mass spectra of the derivatized metabolites were obtained. The deepoxy metabolites were significantly less toxic to brine shrimp than were the corresponding epoxy analogs. Polyclonal and monoclonal T-2 antibodies were examined for cross-reactivity to several T-2 metabolites. Both HT-2 and DE HT-2 cross-reacted with mouse immunoglobulin monoclonal antibody 15H6 to a greater extent than did T-2 toxin. Rabbit polyclonal T-2 antibodies displayed greater specificity to T-2 toxin compared with the monoclonal antibody, with relative cross-reactivities of only 17.4, 14.6, and 9.2% for HT-2, DE HT-2, and deepoxy T-2 triol, respectively. Cross-reactivity of both antibodies was weak for T-2 triol, T-2 tetraol, 3'OH T-2, and 3'OH HT-2.  相似文献   

6.
Three new immunogens which were prepared by conjugation of the carboxymethyl oxime (CMO) derivatives of HT-2 toxin, T-2 tetraol (T-2 4ol), and T-2 tetraol tetraacetate (T-2 4Ac) to bovine serum albumin (BSA) were tested for the production of antibodies against the major metabolites of T-2 toxin. Antibodies against HT-2 toxin and T-2 4Ac were obtained from rabbits 5 to 10 weeks after immunizing the animals with CMO-HT-2-BSA and CMO-T-2 4Ac-BSA conjugates. Immunization with CMO-T-2 4ol-BSA resulted in no antibody against T-2 4ol. The antibody produced against HT-2 toxin had great affinity for HT-2 toxin as well as good cross-reactivity with T-2 toxin. The relative cross-reactivities of anti-HT-2 toxin antibody with HT-2 toxin, T-2 toxin, iso-T-2 toxin, acetyl-T-2 toxin, 3'-OH HT-2, 3'-OH T-2, T-2 triol, and 3'-OH acetyl-T-2, were 100, 25, 10, 3.3, 0.25, 0.15, 0.12 and 0.08%, respectively. Antibody against CMO-T-2 4Ac was very specific for T-2 4Ac and had less than 0.1% cross-reactivity with T-2 toxin, HT-2 toxin, acetyl-T-2 toxin, diacetoxyscirpenol, deoxynivalenol, and deoxynivalenol triacetate as compared with T-2 4Ac. The detection limits for HT-2 toxin and T-2 4ol by radioimmunoassay were approximately 0.1 and 0.5 ng per assay, respectively.  相似文献   

7.
Three new immunogens which were prepared by conjugation of the carboxymethyl oxime (CMO) derivatives of HT-2 toxin, T-2 tetraol (T-2 4ol), and T-2 tetraol tetraacetate (T-2 4Ac) to bovine serum albumin (BSA) were tested for the production of antibodies against the major metabolites of T-2 toxin. Antibodies against HT-2 toxin and T-2 4Ac were obtained from rabbits 5 to 10 weeks after immunizing the animals with CMO-HT-2-BSA and CMO-T-2 4Ac-BSA conjugates. Immunization with CMO-T-2 4ol-BSA resulted in no antibody against T-2 4ol. The antibody produced against HT-2 toxin had great affinity for HT-2 toxin as well as good cross-reactivity with T-2 toxin. The relative cross-reactivities of anti-HT-2 toxin antibody with HT-2 toxin, T-2 toxin, iso-T-2 toxin, acetyl-T-2 toxin, 3'-OH HT-2, 3'-OH T-2, T-2 triol, and 3'-OH acetyl-T-2, were 100, 25, 10, 3.3, 0.25, 0.15, 0.12 and 0.08%, respectively. Antibody against CMO-T-2 4Ac was very specific for T-2 4Ac and had less than 0.1% cross-reactivity with T-2 toxin, HT-2 toxin, acetyl-T-2 toxin, diacetoxyscirpenol, deoxynivalenol, and deoxynivalenol triacetate as compared with T-2 4Ac. The detection limits for HT-2 toxin and T-2 4ol by radioimmunoassay were approximately 0.1 and 0.5 ng per assay, respectively.  相似文献   

8.
The type A trichothecenes T-2 and HT-2 toxins are toxic secondary metabolites produced by fungi of the Fusarium genus. Their occurrence in cereals, especially in oats, implies health risks for the consumer. Therefore, it is an important task to develop selective and sensitive methods for the analysis of T-2 and HT-2 toxins, and to undertake further studies on their stability and toxicity. Although most toxins are commercially available, their high prices are the limiting factor on the realization of these experiments. Thus, we developed a method for large-scale production of T-2 and HT-2 toxin as well as T-2 triol and T-2 tetraol. T-2 toxin was obtained in gram quantities by biosynthetic production with cultures of F. sporotrichioides. As HT-2 toxin was only formed as a by-product, and T-2 triol and T-2 tetraol were not generated, these compounds were produced by alkaline hydrolysis of T-2 toxin. Separation and isolation of crude toxins was achieved by fast centrifugal partition chromatography (FCPC), which is an efficient tool for the large-scale purification of natural products. Using this fast and yield effective technique, several hundred milligrams of HT-2 toxin, T-2 triol, and T-2 tetraol were obtained. Subsequent, HT-2 toxin and T-2 triol were used for the large-scale synthesis of isotope-labeled T-2 and HT-2 toxin, respectively. Using these standards, an isotope dilution-(ID)-HPLC-MS/MS method for the quantification of T-2 and HT-2 toxin in different matrices was developed.  相似文献   

9.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

10.
In vitro metabolism of T-2 toxin was studied in homogenates of mouse and monkey livers. In addition to several hydrolyzed products, including HT-2 toxin, neosolaniol, 4-deacetylneosolaniol, 15-deacetylneosolaniol, and T-2 tetraol, two metabolic products were isolated from the incubation mixture. Their structures were confirmed as 3'-hydroxy T-2 toxin and 3'-hydroxy HT-2 toxin on the basis of mass and nuclear magnetic resonance spectroscopy. The formation of these hydroxylated metabolites was found in the microsomes in the presence of NADPH, and the hydroxylation reaction was enhanced by treating mice with phenobarbital. The results suggest that a cytochrome P-450 is catalyzing the hydroxylation at the C-3' position of T-2 and HT-2 toxins. An in vitro metabolic pathway of T-2 toxin in the hepatic homogenates containing the NADPH-generating system is proposed.  相似文献   

11.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

12.
A method for the detection of T-2 metabolites was developed and applied to analysis of metabolites in excreta of broiler chickens administered 3H-labeled T-2 toxin. The method used acetonitrile extraction and partitioning with petroleum ether followed by chromatography on Amberlite XAD-2, Florisil, and Sep-Pak C18. The recovery of T-2 toxin added to the chicken excreta was 73% at a concentration of 0.2 microgram/g. About 80% of orally administered 3H-labeled T-2 toxin was rapidly metabolized to more polar derivatives and eliminated in the excreta within 48 h. T-2 toxin, HT-2 toxin, neosolaniol, and T-2 tetraol were detected at 0.06 to 1.13% of the total dose, 48 h after administration. Eight unknown derivatives, named TB-1 to TB-8, were quantitatively more significant than the metabolites above. TB-3 and TB-9 represented about 12 and 25% of the total dose, respectively. One of the metabolites (TB-6), 1.5% of the total dose, was identified as 4-deacetylneosolaniol (15-acetyl-3 alpha, 4 beta, 8 alpha-trihydroxy-12, 13-epoxytrichothec-9-ene).  相似文献   

13.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds.  相似文献   

14.
3H-labeled T-2 mycotoxin was dissolved in various aqueous media and stored for up to 3 weeks at 4, 22, and 37 degrees C. At periods ranging from 1 to 21 days, aliquots were assayed by thin-layer chromatography. Thin-layer chromatography plates were scanned for breakdown products by use of a radioisotope scanner, and breakdown products were identified based on their comigration with known standards. Results indicated that T-2 toxin was more stable in tissue culture medium with or without serum, than in Hanks balanced salt solution (HBSS), at all temperatures. The metabolites HT-2, T-2 triol, and T-2 tetraol were detected as early as 1 day (HBSS; 37 degrees C) and as late as 3 weeks (HBSS; 4 degrees C) after storage. Stability of the toxin in aqueous media decreased with increasing temperature.  相似文献   

15.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

16.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

17.
3H-labeled T-2 mycotoxin was dissolved in various aqueous media and stored for up to 3 weeks at 4, 22, and 37 degrees C. At periods ranging from 1 to 21 days, aliquots were assayed by thin-layer chromatography. Thin-layer chromatography plates were scanned for breakdown products by use of a radioisotope scanner, and breakdown products were identified based on their comigration with known standards. Results indicated that T-2 toxin was more stable in tissue culture medium with or without serum, than in Hanks balanced salt solution (HBSS), at all temperatures. The metabolites HT-2, T-2 triol, and T-2 tetraol were detected as early as 1 day (HBSS; 37 degrees C) and as late as 3 weeks (HBSS; 4 degrees C) after storage. Stability of the toxin in aqueous media decreased with increasing temperature.  相似文献   

18.
Cytotoxicity of T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, and T-2 tetraol was compared between normal human fibroblasts and mutant I-cell human fibroblasts, which only produce 10 to 15% of lysosomal hydrolases present in normal fibroblasts. Both cleavage of 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and cell count by hemocytometer were used for evaluations. For all toxins, dose-related effects on both types of cultures were evident. Cytotoxicity of the above mycotoxins on both cell lines were similar, indicating that lysosomal enzymes were not involved in the toxicity of T-2 toxin and its congeners. An inhibitor of lysosomal cysteine proteases (E-64) did not alter the cytotoxicity of T-2 toxin. The decreasing order of toxicity was T-2 toxin, HT-2 toxin, neosolaniol, acetyl T-2 toxin, and T-2 tetraol in both cell lines. When normal human fibroblasts were loaded with the fluorescent dye Lucifer yellow CH (LY), a subsequent treatment of T-2 toxin did not disrupt lysosomal membranes. The uptake of LY was not affected by T-2 toxin, which indicated that T-2 toxin did not interfere with the endocytic pathway. Results indicate that T-2 toxin and its congeners do not exert their primary toxic effect through lysosomal enzymes, membranes, or via the endocytic pathway.  相似文献   

19.
A highly toxic strain ofFusarium sporotrichioides Sherb. (P-11) isolated from wheat in Poland produced on rice culture up to 11 trichothecenes, which are: T-2 toxin (750 ppm), neosolaniol (300 ppm), HT-2 toxin (75 ppm), acetyl T-2 toxin (35ppm), 3′-hydroxy-T-2 (20ppm), T-2 triol (12.5ppm), 3′-hydroxy-HT-2 (1.2ppm), 4-acetoxy-T-2 tetraol (1.1 ppm), 15-acetoxy-T-2 tetraol (0.65 ppm), 8-acetoxy-T-2 tetraol (0.45 ppm), and T-2 tetraol (0.2 ppm). The presence of most of these trichothecenes, including the 3′-hydroxy-derivatives, in the excreta of animals treated with T-2 toxin indicates the existence of some correlation between T-2 toxin metabolism in animals and microorganisms, respectively.  相似文献   

20.
Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2.   总被引:7,自引:4,他引:3       下载免费PDF全文
The metabolic pathway of T-2 toxin in Curtobacterium sp. strain 114, one of the T-2 toxin-assimilating soil bacteria, was investigated by thin-layer and gas-liquid chromatographic analyses. T-2 toxin added to the basal medium as a single carbon and energy source was biotransformed into HT-2 toxin and an unknown metabolite. Infrared, mass spectrum, proton magnetic resonance, and other physico-chemical analyses identified this new metabolite as T-2 triol. T-2 toxin was first deacetylated by the bacterium into HT-2 toxin, and this metabolite was then biotransformed into T-2 triol without formation of neosolaniol and T-2 tetraol. No trichothecenes remained in the culture medium after prolonged culture. Some properties of T-2 toxin-hydrolyzing enzymes were observed with whole cells, the cell-free soluble fraction, and the culture filtrate. Besides T-2 toxin, trichothecenes such as diacetoxyscirpenol, neosolaniol, nivalenol, and fusarenon-X were also assimilated by this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号