首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The aim of the present study was to investigate the ovulation rate and its relationship to number of total piglets born in purebred gilts under tropical climatic conditions. This study was conducted in two swine breeding herds (A and B) in the northeastern part of Thailand. The sources of swine genetic material originate from West Europe. Gilts were mated (AI) on the second or later observed estrus at a body weight of at least 130 kg. In most cases, they were mated at third estrus. One hundred and twenty-seven gilts, 24 Landrace and 24 Yorkshire from herd A, and 42 Landrace and 37 Yorkshire from herd B were used. Gilts were examined once by laparoscopy under general anesthesia between days 8 and 15 after mating. The ovaries were examined and the pathological findings were recorded. The number of corpora lutea was counted, and was assumed to equal the ovulation rate. Subsequent mating results and farrowing data were recorded. The data were analyzed with analysis of variance. Single or double unilateral cysts and par-ovarian cysts did not affect mating results. Landrace gilts were significantly younger at first mating than Yorkshire gilts (244 versus 249 days, P < 0.05). At first mating, Yorkshire gilts had a significantly higher ovulation rate compared to Landrace gilts (15.3 versus 13.8, P < 0.001). There was no difference in the number of total piglets born per litter between the two breeds, but the total prenatal loss from ovulation to farrowing was significantly higher in Yorkshire than in Landrace gilts. Both the low ovulation rate and the high prenatal loss contribute to the low litter size in gilts raised under tropical climatic conditions.  相似文献   

2.
The aim of the present study was to retrospectively analyze causes of the variation in age at first mating in Swedish Landrace (L) and Swedish Yorkshire (Y) gilts. Production traits including growth rate from birth to 100kg body weight and backfat thickness at 100kg body weight were also studied. Data analyzed were obtained from 11 L and 11 Y nucleus herds and included gilts born during a 5-year-period from October 1993 until September 1998. The complete data set included information on 14,761 gilts (6997 L and 7764 Y). Traits analyzed included age of gilt at first mating, growth rate and backfat thickness. Seven statistical models were used for analyzing the data. Factors included were gilt breed, birth month, parity number and size of the litter in which the gilt was born as well as their interactions. Compared with Y gilts, L gilts grew faster (571 versus 556 g/day; P<0.001), had a thinner backfat (11.9 versus 12. 3mm; P<0.001) at 100kg body weight and were 12 days younger at first mating (237 versus 249 days; P<0.001). Birth month significantly (P<0.001) influenced age at first mating, growth rate and backfat thickness. Gilts born from smaller litters were mated at younger age than gilts born from larger litters even when age at first mating was adjusted for the effect of growth rate and backfat thickness. Growth rate of the gilts decreased when 'birth litter size' increased. Gilts born from primiparous sows grew slower, had a thinner backfat at 100kg body weight and were older at first mating compared with gilts born from multiparous sows. Gilts with a higher growth rate were younger at first mating than those with a lower growth rate. Gilts with a thicker backfat at 100kg body weight were mated earlier than the thin ones. However, the effect of growth rate on age at first mating was more pronounced in the gilts with a thinner backfat rather than the ones with a thicker backfat.  相似文献   

3.
Studies on the ovulation rate, prenatal survival and litter size of Chinese Meishan pigs have given widely divergent results depending on the extent of inbreeding of the animals, their original genetic diversity, the age and parity, and the conditions of management. To obtain meaningful results, it is necessary to characterize the population under study. The following report characterizes populations of Meishan and Yorkshire of a widely diverse background. First farrowing data were collected on 21 Meishan and 20 Yorkshire gilts. Meishan gilts had 12.4 fully formed piglets and Yorkshire gilts had 7.4 fully formed piglets (P < 0.01). Meishan gilts averaged 1.86 mummified fetuses per litter vs 0.05 per Yorkshire litter (P < 0.01). Yorkshire piglets averaged 1.3 kg body weight at birth vs 0.9 kg for Meishan piglets (P < 0.01). At 47 days of second gestation, 19 Meishan and 12 Yorkshire sows averaged 22.7 and 16.3 corpora lutea (CL), respectively (P < 0.01). Uterine length and number of fetuses were not different (P > 0.40) in the two breeds. Daily estrous detection of 50 Meishan and 34 Yorkshire gilts began at 60 and 120 days of age, respectively. Meishan gilts reached sexual maturity at 95 days of age, which was 105 days earlier than Yorkshire gilts (P < 0.01). Meishan gilts were in estrus nearly 1 day longer than Yorkshire gilts at first, second and third estrus (P < 0.05). No differences in cycle length between breeds were detected for the first or second estrous cycle (P > 0.60). Nineteen Meishan gilts were slaughtered at 51 days of gestation and their reproductive tracts were recovered. The mean number of dissected CL (17.0), number of fetuses (13.1), total uterine length (396 cm), spacing per fetus (29.9 cm), allantoic (124.9 ml) and amniotic (32.2 ml) volumes, crown-rump length (82.8 mm), weight (35.4 g), sex, and direction of each fetus were determined. Chinese Meishan gilts reached puberty much earlier and were in estrus longer than Yorkshire gilts and Meishan sows had more CL than Yorkshire sows.  相似文献   

4.
Seventy-seven Large White x Meishan F2 crossbred gilts with prolactin receptor (PRLR) genotype AA (n = 26), AB (n = 36) and BB (n = 15) were compared for teat number (FTm), age at first estrus, gestation length (GL), litter size, and litter means of functional teat number (FTp), birthweight (BW), and pre-weaning growth rate (GR). Own placental information was available for 88% of 620 live-born piglets (62 gilts), since placentae were labeled during farrowing. The effect of PRLR genotype of the mother on average placenta weight (PLW) and placenta efficiency (EFF = BW/PLW), was therefore, also analyzed, PRLR genotype significantly (P < 0.05) affected age at first estrus and, as a result (since the gilts were inseminated at a fixed estrus number), age and bodyweight at insemination. Furthermore, PRLR genotype affected total number of piglets born (TNB, P = 0.056) and number of piglets born alive (NBA, P = 0.072), but it did not affect (P > 0.3) GL, BW or GR, neither before nor after correction for litter size. BB gilts were significantly younger at first estrus and younger and lighter at insemination than AA gilts (P < 0.05). AA gilts had larger TNB (P = 0.047) and tended to have a larger NBA (P = 0.062) than BB gilts. TNB was 11.4 +/- 0.7, 10.8 +/- 0.6, and 8.8 +/- 0.9; NBA was 11.1 +/- 0.6, 10.5 +/- 0.6, and 8.7 +/- 0.9; BW was 1309 +/- 40, 1277 +/- 34, and 1290 +/- 53 g; and GL was 113.6 +/- 0.3, 113.8 +/- 0.3, and 113.5 +/- 0.4 days for AA, AB and BB gilts, respectively. The effects on litter size and age at first estrus are independent effects. PRLR affected PLW (P = 0.050) and EFF (P = 0.066), resulting in a difference between AA and BB gilts. PLW was 160 +/- 9, 181 +/- 7 and 196 +/- 11 g and EFF was 7.6 +/- 0.2, 7.3 +/- 0.2 and 6.7 +/- 0.3 for AA (n = 19), AB (n = 29) and BB (n = 14) gilts, respectively. After correction for TNB, the differences disappeared. Functional teat number of the AA. AB and BB gilts was 15.35 +/- 0.22, 15.53 +/- 0.18, and 15.60 +/- 0.29, respectively, and was not affected by PRLR genotype (P = 0.7). Functional teat number of piglets from AA, AB and BB mothers was 14.20 +/- 0.10, 14.37 +/- 0.08, and 14.63 +/- 0.13, respectively. Piglets from BB mothers had on average larger numbers of functional teats compared to piglets from AA mothers (P = 0.028). In conclusion, PRLR gene is a major gene or marker for age at first estrus, litter size, and litter average of number of functional teats in the Large White x Meishan F2 crossbred gilts studied. The favorable allele for litter size (A allele) is the unfavorable allele for age at first estrus and for litter mean of functional teat number.  相似文献   

5.
The present study was performed to evaluate retrospectively the influence of birth litter size, birth parity number, performance test parameters (growth rate from birth to 100kg body weight and backfat thickness at 100kg body weight) and age at first mating (AFM) of gilts on their reproductive performance as sows. Traits analysed included remating rate in gilts (RRG), litter size, weaning-to-first-service interval (WSI), remating rate in sows and farrowing rate (FR). Data were collected from 11 Swedish Landrace (L) and 8 Swedish Yorkshire (Y) nucleus herds and included 20712 farrowing records from sow parities 1-5. Sows that farrowed for the first time during 1993-1997, having complete records of performance test and AFM, were followed up to investigate their subsequent reproductive performance until their last farrowing in 1999. Analysis of variance and multiple regression were applied to continuous data. Logistic regression was applied to categorical data. The analyses were based on the same animals and the records were split into six groups of females, i.e. gilts, primiparous sows, and sows in parities 2-5, respectively. Each additional piglet in the litter in which the gilt was born was associated with an increase of her own litter size of between 0.07 and 0.1 piglets per litter (P<0.001). Gilts born from sow parity 1 had a longer WSI as primiparous sows compared with gilts born from sow parity 4 (0.3 days; P<0.05) or parity 5 (0.4 days; P<0.01). Gilts with a higher growth rate of up to 100kg body weight had a larger litter size (all parities 1-5; P<0.05), shorter WSI (all parities 1-5; P<0.05) and higher FR (parities 2 and 5; P<0.05) than gilts with a lower growth rate. Gilts with a high backfat thickness at 100kg body weight had a shorter WSI as primiparous sows (P<0.001) compared with low backfat gilts, and 0.1 piglets per litter more as second parity sows (P<0.01). A 10 day increase in AFM resulted in an increase in litter size of about 0.1 piglet for primiparous sows (P<0.001) and a decrease (P<0.05) for sow parities 4 and 5.  相似文献   

6.
Analyses of the records of 244 litters of purebred Yorkshire, Landrace, the crosses, backcrosses and crisscrosses of these two breeds were carried out to evaluate some of the factors influencing the losses of piglets prior to weaning. There were differences in percentage survival between mating systems, with crossbred Landrace x Yorkshire piglets showing the highest rate of survival.A direct relationship existed between the duration of farrowing and the incidence of stillbirths. The incidence of stillbirths was higher for male piglets than for female piglets.Litter size at birth and weight loss of sow from parturition to weaning were important factors in determining litter size at weaning. Litter size at birth however, exerted a more important influence on litter performance than weight loss. Age of sow had no significant effect on the number of piglets alive at weaning and implied that gilts were apparently as good mothers as sows. From computed least squares estimates, it was implied that in general, piglets of low birthweights had much less chance of survival than those born with heavier weights.  相似文献   

7.
A total of 149 maiden gilts (Landrace x Yorkshire) were assigned at random to one of three treatment groups at the onset of puberty. During the first and second estrus, two groups of gilts were inseminated with either 50 ml attenuated semen (n = 50) or physiological saline (n = 50). The control gilts (n = 49) remained untreated. At the third estrus, all gilts were inseminated with fresh extended semen. Intrauterine infusion with attenuated semen prior to breeding significantly increased conception rate of gilts compared with controls (82.0% vs 63.3%; P<0.05). The average interval from puberty to breeding and the age at breeding were lower in gilts treated with attenuated semen (42.75 +/- 0.89 d and 210.39 +/- 2.98 d) than control gilts (45.62 +/- 1.75 d and 218.29 +/- 3.08 d), but these differences were not significant. Litter size and weights at birth and weaning were not influenced by treatment. Results from this study indicate that presensitization to sperm antigens prior to breeding may be a useful and practical method of improving the fertility of maiden gilts.  相似文献   

8.
One-hundred-twenty prepubertal crossbred gilts (Hampshire x Duroc) x (Yorkshire x Landrace) were removed from the nursery at 68.7+/-0.4 days of age and 23.6+/-0.9 kg body weight and relocated to a conventional grower-finisher unit. In addition, 60 barrows of similar genetics were relocated from the nursery at 71.0+/-0.5 days of age and 27.4+/-0.5 kg body weight to the same building. Twelve mature anestrous ewes that weighed 77.0+/-2.4 kg were assigned randomly to one of four pens of equal dimensions among the pens containing pigs. Ewes were included in this study to serve as positive controls since their secretory profiles of melatonin are well characterized. All pigs were bled by jugular venipuncture at approximately 3, 4, 5 and 6 months of age. At each age in the pigs and the mature ewes, a single sample was obtained during photophase and scotophase. Illumination intensity during the period of incandescent lighting averaged 220 1x. Blood collection was initiated approximately 4 h after sunrise and 3.5-4 h after sunset. The proportion of animals that exhibited a nocturnal rise in melatonin (MEL) was similar (P > 0.05) between gilts and barrows, but was higher (P < 0.002) in ewes than in pigs at each age examined. A greater proportion (P = 0.007) of 3 month old barrows had a nocturnal rise of MEL than any other age of barrow. Similarly, there was a tendency (P = 0.06) for more 3 month old gilts to exhibit a nocturnal increase in serum MEL than 4, 5 or 6 month old gilts.  相似文献   

9.
The purpose of this study was to analyze reproductive performance in purebred Landrace and Yorkshire sows with special reference to seasonal influence and parity number, under tropical conditions where day length is almost constant throughout the year. Data from three purebred sow herds in Thailand during the period from 1993 to 1996 were analyzed. The two breeds were present in all three herds. The analysis comprised records of 3848 Landrace sow litters and 2033 Yorkshire sow litters. The statistical models included the fixed effects of month, year, parity, breed of the sow, herd, and two-way interactions of breed-parity, breed-herd, breed-month, breed-year, parity-month, month-herd, year-herd and month-year. The random effect of sow within breed was included in all models. Analysis of covariance was performed to analyze the effect of temperature, humidity and heat index on number of total born per litter (NTB), weaning to first service interval (WSI) and farrowing rate (FR). Landrace sows had significantly higher NTB (0.6 piglets), number of live born per litter (0.5 piglets), and average birth weight (0.13 kg) than Yorkshire sows (P<0.001). Farrowing rate was 3.9% higher in Landrace sows than in Yorkshire sows (P<0.01). However, Yorkshire sows had significantly shorter WSI (P<0.001) and significantly higher proportion of sows served within 7 days after weaning (P<0.01) than Landrace sows. No breed differences were found in number of stillborn per litter and weaning to conception interval. Parity had significant effect on all reproductive parameters analyzed. Number of total born and live born per litter was significantly lower for sows farrowing during the rainy season than in other seasons. Farrowing rate was low for sows mated during the hot and rainy season. Weaning to service interval and WSI7 were prolonged for sows weaned during the hot and rainy season. Reproductive performance was significantly unfavorably influenced by elevated temperature and heat index after mating (NTB and FR) or during lactation (WSI).  相似文献   

10.
The objective of the present study was to investigate puberty attainment in crossbred Landrace x Yorkshire (LY) gilts reared under tropical conditions and their subsequent reproductive performance. This study was carried out in a 2400-sow herd over a 1-year period. A total of 696 crossbred LY replacement gilts were included. Faecal samples from 214 gilts were collected to determine the faecal progesterone profiles around the time of first oestrus. Solid-phase 125I-radioimmunoassay was used to determine the progesterone concentrations in the faecal extract. The gilts entered the herd at an average age of 177.5 +/- 12.6 days, 95.7 +/- 10.2 kg body weight (BW) and a backfat thickness (BF) of 12.0 +/- 2.9 mm. On average, the gilts expressed first standing oestrus at 195 days of age, 106 kg of BW and a BF of 13.0 mm. The interval from entry to the gilt pool to the first observed oestrus (EOI) was 24.4 +/- 18.0 days (range 0-88 days). The hormonal profile indicated that the gilts that actually ovulated during the first observed oestrus was 34% (group A), the gilts that had ovulated before the first observed oestrus was 21% (group B) and the gilts that did not ovulate during the first observed oestrus was 45% (group C). During summer the proportion of group A gilts was significantly lower than during the winter and the rainy seasons (P < 0.05). The BW of gilts at entry significantly correlated with the BF at entry (r = 0.31, P < 0.001), the age at entry (r = 0.47, P < 0.001), the BW at first oestrus (r = 0.65, P < 0.001) and the BF at first oestrus (r = 0.33, P < 0.001). An increase of BW at entry of 1 kg resulted in a decrease of EOI of 0.28 days. The age, BW and BF of gilts at the first observed oestrus significantly influenced the total number of piglets born per litter (TB) and the number of piglets born alive per litter (BA) in the first three parities. Gilts expressing their first oestrus between 181 and 200 days had a significantly larger TB than gilts that expressed first oestrus between 150 and 180 days (P = 0.03) and between 201 and 220 days (P = 0.003). Gilts that showed first oestrus between 110.1 and 120.0 kg had a larger TB and BA than gilts that showed first oestrus between 80.0 and 100.0 kg (P < 0.05). Gilts that showed first oestrus with a BF between 13.1 and 15.0 mm had a larger TB and BA than gilts that showed first oestrus with a BF between 11.1 and 13.0 mm (P < 0.05). Group A gilts had a significantly larger TB than group B (10.5 piglets/L versus 9.4 piglets/L, P = 0.02), while farrowing rate (FR) did not differ significantly among groups A, B and C (78.1, 76.9 and 77.6%, respectively). Gilts that farrowed in the summer had a larger TB and BA than gilts that farrowed in the winter (TB, P = 0.03; BA, P = 0.09) and the rainy season (TB, P = 0.006; BA, P = 0.003). In conclusion, LY gilts reared under tropical conditions expressed first standing oestrus at 195 days of age, 106 kg BW and a BF of 13.0 mm. Under field conditions, 21% of the gilts with an observed oestrus had ovulated. The proportion of gilts that showed first oestrus and ovulated normally was lowest during the summer. The age, BW and BF at first observed oestrus influenced subsequent reproductive performance over the first three parities. The mean litter size (TB and BA) in the first three parities were highest in gilts that had a first observed oestrus between 181 and 200 days with 110.1-120.0 kg BW and 13.1-15.0 mm BF.  相似文献   

11.
Cede P  Bilkei G 《Theriogenology》2004,61(1):185-194
The present study was conducted in a large Croatian "built up unit". The objective of the study was to determine if an indoor modified eros centre (MEC) compared to indoor or outdoor group housing of gilts, influenced the onset of puberty of gilts and the reproductive performance of the evaluated females (n = 783) over four parities. The gilts were from the same nucleus herd. Gilts of same age (140-150 days of age), body condition (body condition score of 3-4) and similar genetics (four-way cross females), during the same season (January to April 1999), were randomly divided at arrival into three groups and treated as follows:MEC gilts (n = 279): These were placed into indoor MEC pens in groups of 8-10. The gilts had continuous fenceline contact to boars (one boar to two groups of gilts, boars were changed daily) and to shortly weaned oestrous sows. Gilts were regrouped and dislocated at 10-day intervals. Outdoor gilts (n = 263): These were kept in groups of 8-10 on a large pasture (80-100 m2 per group). The animals had fenceline contact to mature boar for 5-10 min daily. Control indoor gilts (n = 241): These were housed indoors in large pens in groups of 8-10. The animals had fenceline contact to mature boars for 5-10 min daily. Each outdoor group had an insulated hut with straw bedding. All gilts were fed ad libitum with the same commercial diet. Housing gilts in MEC resulted in earlier (P < 0.001) onset of estrus (MEC: 174.8 +/- 2.4 days, indoor group housing: 207.6 +/- 4.1 days, outdoor group housing: 187.4 +/- 2.1 days) and lower (P < 0.001) farrowing rate to first service (MEC: 70.97%, indoor group housing: 89.73%, outdoor group housing: 89.62%). Farrowing rate of regularly returning MEC gilts to second service was 95.00%. First total-born litter size, first liveborn litter size, first wean-to-estrus interval (WEI), percent of sows bred after first weaning, second total-born litter size, second liveborn litter size, average third and fourth total-born and liveborn litter size, number of sows having four litters, number of litters per sow, total number of pigs per sow, total number of liveborn pigs per sow showed no significant differences between the groups. More (P < 0.05) sows were culled in outdoor group. Compared to MEC and outdoor housing, indoor housed sows suffered higher (P < 0.05) percentage of anoestrus.  相似文献   

12.
A single nucleotide polymorphism (SNP; C vs. T) that creates an extra GATA-1 site (T allele) in intron 4 of the swine erythropoietin receptor (EPOR) gene was discovered and a genotyping assay for this SNP was developed. A total of 402 gilts from lines selected either at random (control), for ovulation rate (OR) or for uterine capacity (UC) for 11 generations were unilaterally hysterectomized-ovariectomized (UHO) at 160 days of age, mated at approximately 250 days of age and slaughtered at 105 days of pregnancy. Blood samples and spleens were collected from each foetus and the numbers of corpora lutea (CL) and live foetuses, the weights of each foetus and placenta, and each foetal haematocrit were recorded. In addition, intact gilts from the OR line or from a Yorkshire, Landrace, Duroc, crossbred line (BX) were mated and farrowed. At farrowing, the numbers of fully formed and live piglets were recorded for each litter. Genomic DNA was isolated for both the UHO and intact gilts, from foetuses from the UHO gilts that were heterozygous for the EPOR SNP, and from the boars from the BX line and were then used to determine EPOR SNP genotypes. Only CC and CT gilts were observed in the control, OR and UC selected lines. Presence of the EPOR T allele was associated (P < 0.05) with increased UC in these gilts. The number of heterozygous and homozygous foetuses did not differ within UHO litters, or did EPOR genotype influence foetal haematocrit. In intact gilts from the OR line, litter size was significantly associated (P < 0.05) with EPOR SNP genotype. Finally, results from intact gilts of the BX line, in which both the gilt and the boar genotypes were known, allowed an analysis to determine the effect of the gilt and/or the foetal genotype on litter size. This analysis indicated that the predicted foetal genotype (with gilt genotype as covariate) was associated with litter size (an increase of 2.6 +/- 1.0 piglets born alive predicted for homozygous T litters compared with homozygous C litters, P < 0.01) whereas the effect of the gilt genotype (adjusted for foetal genotype) on litter size was not significant. These results indicate that the EPOR SNP is associated with UC and litter size in two distinct populations and could be useful in increasing litter size in swine that are not limited in OR.  相似文献   

13.
The aim of this work was to determine if gilts, which have a high growth rate (GR) could be mated earlier without reducing the reproductive performance or increasing the culling rate up to the third parity. Gilts of Camborough 22 (C22, n=568) breeding were mated and allocated into three groups according to weight and age on the insemination day. G1 (n=164)-gilts with a GR>or=700 g/d and inseminated at <210 d. G2 (n=165)-gilts with a GR>or=700 g/d and inseminated at >or=210 d. G3 (n=239)-gilts with a GR<700 g/d and inseminated at >or=210 d. All females were fed ad libitum from 150 d on and were inseminated at their second estrus or later. The minimum weight at mating was 127 kg. Three parities were studied, with farrowing rate, litter size and culling rate being compared. At the first parity, G2 gilts produced, on average, one more piglet than the other groups (P<0.05). However, when analyzing three parities, there were no differences in total born (11.6 x 12.3 x 11.7), farrowing rate (87.1% x 88.7% x 89.8%) and culling rate (30.2% x 25.3% x 28.2%) among G1-G3 groups, respectively (P>0.05). In conclusion, gilts, which had a minimum weight of 127 kg can be inseminated at their second or greater estrus, between 185 and <210 d of age, without impairing their productive performance over three parities.  相似文献   

14.
母猪繁殖力性状影响因素分析及遗传参数估计   总被引:5,自引:0,他引:5  
Shen JY  Yu Y  Wang X  Ma PP  Zhu SE  Shi WQ  Wang YC  Zhang Q 《遗传》2012,34(5):591-596
母猪繁殖力是影响种猪场经济效益的重要因素。文章对纯种大白猪、长白猪、杜洛克猪的8491窝产仔记录进行统计分析,建立固定效应模型对总产仔数、健仔数、初生窝重、弱仔数、死胎数、木乃伊胎数和畸形胎数共7个繁殖性状进行最小二乘分析,分析胎次、配种季节、品种对母猪繁殖性能的影响,同时比较了纯繁和杂交的效果。利用动物模型REML(约束最大似然)方法估计繁殖性状的遗传力和遗传相关。结果表明,胎次、配种季节和品种对总产仔数、健仔数、初生窝重影响极显著(P<0.001),胎次和品种对弱仔数影响极显著(P<0.001),但配种季节对弱仔数影响不显著。胎次对死胎数影响显著(P<0.05),而配种季节和品种对死胎数影响不显著,胎次、配种季节和品种对木乃伊胎、畸形胎数影响不显著。长白♂×大白♀交配组合具有最高的总产仔数、健仔数和初生窝重。繁殖性状遗传力估计结果显示,长白猪初生窝重的遗传力最高,为0.227。其余性状遗传力均在0.2以下,为低遗传力性状。3个品种母猪的健仔数与初生窝重、总产仔数与健仔数之间的遗传相关达0.96以上。研究结果为降低非传染性因素造成的种母猪产仔数低的问题以及种猪场对母猪繁殖力的选育提高提供了参考数据和理论依据。  相似文献   

15.
母猪繁殖力是影响种猪场经济效益的重要因素。文章对纯种大白猪、长白猪、杜洛克猪的8491窝产仔记录进行统计分析, 建立固定效应模型对总产仔数、健仔数、初生窝重、弱仔数、死胎数、木乃伊胎数和畸形胎数共7个繁殖性状进行最小二乘分析, 分析胎次、配种季节、品种对母猪繁殖性能的影响, 同时比较了纯繁和杂交的效果。利用动物模型REML(约束最大似然)方法估计繁殖性状的遗传力和遗传相关。结果表明, 胎次、配种季节和品种对总产仔数、健仔数、初生窝重影响极显著(P<0.001), 胎次和品种对弱仔数影响极显著(P<0.001), 但配种季节对弱仔数影响不显著。胎次对死胎数影响显著(P<0.05), 而配种季节和品种对死胎数影响不显著, 胎次、配种季节和品种对木乃伊胎、畸形胎数影响不显著。长白♂×大白♀交配组合具有最高的总产仔数、健仔数和初生窝重。繁殖性状遗传力估计结果显示, 长白猪初生窝重的遗传力最高, 为0.227。其余性状遗传力均在0.2以下, 为低遗传力性状。3个品种母猪的健仔数与初生窝重、总产仔数与健仔数之间的遗传相关达0.96以上。研究结果为降低非传染性因素造成的种母猪产仔数低的问题以及种猪场对母猪繁殖力的选育提高提供了参考数据和理论依据。  相似文献   

16.
Relationships of the length of the uterus at one reproductive stage to the length at other stages and the effect on potential litter size were determined. In Experiment 1, the length of the uterus was measured in situ at 20, 60, or 100 days of age at laparotomy with 20 gilts in each of the three age groups. Forty days after the initial measurement, the uterus was again measured in situ, gilts were ovariectomized and hysterectomized, and associations among uterine measurements at the two different stages were determined. Correlations between uterine length in situ and between uterine length and weight 40 days later were all greater than 0.75 (P < 0.001). The length of one uterine horn increased from 13.9 cm at 20 days of age to 36.7 cm at 140 days of age (P < 0.01). In Experiment 2, 66 gilts were unilaterally hysterectomized and ovariectomized (UHOX) at 150 days of age and the ovary was weighed. Length of the one horn was measured in 36 gilts. At 10 days after first estrus, the length of the remaining uterine horn was measured at laparotomy and corpora lutea were counted in 53 gilts. In 15 of the 53 gilts the remaining uterine horn was removed to obtain uterine weights. At the second or third estrus, 38 gilts were mated and at Day 30 of gestation, 31 gilts were pregnant. The gilts were killed, and the length of the uterus measured and corpora lutea (CL) and fetuses were counted. The length of one uterine horn at 150 days of age was 70 cm with a range of 47–110 cm. At 10 days after first estrus, length had increased to a mean of 141 cm with a range of 86–194 cm and at 30 days of gestation the mean was 244 cm with a range of 186–311 cm. There were 12.2 CL at first estrus, which was not different from 12.4 CL at the second or third estrus. The mean number of fetuses in one horn at 30 days of gestation was 9.5 with 77% prenatal survival. Length of uterine horn at 150 days of age was correlated with uterine horn length (r = 0.56, P < 0.001) at 10 days after first estrus and number of live fetuses (r=0.39, P<0.05) at 30 days of gestation. At Day 10 after first estrus, uterine length was not correlated with the number of CL, whereas at Day 30 of gestation, the number of CL and uterine length were correlated with the number of live fetuses in those gilts with below the mean number of live fetuses, but not in those gilts with above the mean of live fetuses. The number of live fetuses (r=0.66, P < 0.001) and fetal survival (r=0.63; P < 0.001) were correlated with uterine horn length in pregnant UHOX gilts. Length of the prepubertal uterus gives an indication of postpubertal length and the potential litter size in pigs.  相似文献   

17.
The present study aims to investigate the association between growth rate (GR), body weight (BW), backfat thickness (BF) and age at first observed oestrus in crossbred Landrace x Yorkshire (LY) replacement gilts in the tropics. The study was carried out on five commercial swine herds in Thailand between 2004 and 2006. A total of 6946 LY gilts were included. The gilts entered the herd at about 163 days of age. The BW (kg) and BF (mm) of the gilts were measured when the gilts entered the gilt pools and again when the gilts were sent to the breeding house. The GR from birth to entry into the gilt pools (birth to 90 kg BW) (GRe), the GR from entry into to exit from the gilt pools (91-134 kg BW) (GRi) and the GR from birth until the gilts were sent to the breeding house (birth to 134 kg BW) (GRs) were calculated. The relationship between age at first observed oestrus and GRe, GRs, GRi, BW and BF were analyzed. Pearson's correlation and four general linear models (GLMs) were conducted. On average, the gilts showed first observed oestrus at 200+/-28 days of age. The means of age at first observed oestrus varied from 188 to 251 days (P<0.001) among the herds. The GRs of the gilts significantly correlated with the BW (r=0.55, P<0.001) of the gilts when they were sent to the breeding house and the age at first observed oestrus (r=-0.40, P<0.001). Gilts with a high GRe and GRs were younger at first observed oestrus compared to gilts with a low GRe and GRs. On average, the gilts with GRs of over 604 g/day showed first observed oestrus before 5 months of age. GRi was not correlated with the age at first observed oestrus (P>0.05). Neither the BF of the gilts at entry nor the BF that the gilts gained within the gilt pools significantly correlated with age at first observed oestrus (P=0.29 and P=0.69, respectively). But the gilts with a higher BF at entry tended to have a higher BW when they were sent to the breeding house (r=0.44, P<0.001). The present study indicates that replacement gilts with a high GR (both GRe and GRs) tend to show sign of oestrus earlier than gilts with a low GR (both GRe and GRs).  相似文献   

18.
The reproductive performance of gilts and sows from two regions in Norway was investigated in a retrospective analysis of data from the litter recording system. In the Northern region (North; between 65°N and 71°N), there are extreme shifts in natural photoperiod between winter and summer. In the Southern region (South; between 59°N and 60°30′N), photoperiodic changes are less dramatic.

Gilts were 8 days older at first mating or insemination in the North than in the South (P<0.01). A significantly lower proportion of sows in the North were mated or inseminated within 5 days post-weaning than in the South, a difference present both among primiparous and multiparous sows (P<0.01). Overall farrowing rate in the North was lower than in the South, but litter size (total number born) among those pigs that farrowed was larger. After correction for year, month, breed and age at first service, there were still lower odds of farrowing for gilts in North than in South. Neither for primiparous nor multiparous sows were regional differences in farrowing probability significant when year, month, breed and weaning to service interval were included in the model. Gilts and primiparous sows had a lower probability of farrowing following insemination during summer or autumn months, but service month was not significantly related to the farrowing probability of multiparous sows.

For gilts, litter size was positively related to age at first service. For sows, litter size was lowest at weaning to service intervals between 6 and 10 days. Total numbers of piglets born per litter were estimated to be 0.36, 0.38 and 0.55 larger in the North than in the South (differences in least square means; gilts, primiparous sows and multiparous sows, respectively) (P<0.01). Litter size was lower after service during natural long photoperiod than during the rest of the year.  相似文献   


19.
The aim of this study was to investigate the ovulation rate and the weaning-to-service interval (WSI) of sows in relation to their body weight loss during lactation in tropical climatic conditions. Effect of lactation length (LL), number of total born piglets, number of live born piglets, litter birth weight, average piglet birth weight, number of pigs weaned, litter weaning weight and average pig weaned weight on sow weight loss during lactation were also studied. This study was conducted in two commercial purebred sow herds (A, B) in the central part of Thailand from August to December 1997. The herds had both Landrace (L) and Yorkshire (Y) sows. The 123 sows (55 L and 68 Y) in herd A and 153 sows (95 L and 58 Y) in herd B, parity 1-4, were weighed within 4 days after farrowing and at weaning. Lactation length, litter size at birth and at weaning, litter weight at birth and at weaning, and WSI were recorded for each of these sows. In herd A, 52 sows (20 L and 32 Y) were examined once by laparoscopy between days 8 and 14 after AI-service. These sows had farrowed at least seven piglets in the previous parturition. The numbers of corpora lutea (CL) in both ovaries were counted, and were assumed to equal the ovulation rate. L-sows had significantly (P < 0.05) higher relative weight loss during lactation (RWL) than Y-sows. The RWL increased by 0.7% for each extra pig weaned. When LL increased by 1 day, within the interval of 17-34 days, RWL decreased by 0.6%. Sows with a high weight loss had significantly (P < 0.05) longer WSI than sows with medium or low weight loss. Weight loss had a significant (P < 0.05) effect on WSI in parity 1 and 2 sows. Y-sows had more CL than L-sows (15.7 versus 14.0) (P < 0.05). RWL, parity and regression on lactation length had no significant effect on number of CL. In conclusion, sows with higher number of pigs weaned lose more weight. Under the restricted feeding regime applied, high weight loss during lactation prolongs WSI in parity 1 and 2 sows, but has no influence on the ovulation rate at first oestrus after weaning. The ovulation rate is higher in Yorkshire than in Landrace sows. The ovulation rate is independent of parity.  相似文献   

20.
Components of litter size in gilts with different prolactin receptor genotypes   总被引:17,自引:0,他引:17  
Behavioral estrus and components of litter size at Day 35/36 of pregnancy were studied in gilts with prolactin receptor (PRLR) genotype AA (n=9), AB (n=25), and BB (n=22). This PRLR polymorphism (two alleles, A and B) has been associated with litter size, although it is not known whether the polymorphism itself causes differences in litter size or whether it is a marker for a closely linked causative gene. Estrus length in three successive estrous cycles was not affected by genotype, but estrous cycle length tended (P<0.1) to be longer for AA gilts compared to AB and BB gilts. AA gilts had a significantly (P<0.05) higher ovulation rate (21.5+/-0.9) than BB gilts (18.7+/-0.6), resulting in a numerically higher number of embryos at Day 35/36 (17.0+/-1.3, 15.6+/-0.8, and 13.7+/-0.9 for AA, AB, and BB gilts, respectively) which may lead to a subsequent difference in litter size. Ovulation rate of AB gilts (20.0+/-0.5) was intermediate. Genotype affected the total weight of the ovaries (P<0.05). Even after subtraction of the total weight of corpora lutea, ovarian weight in AA gilts was highest (16.6+/-1.0 g), in BB lowest (13.4+/-0.6g), and in AB gilts intermediate (15.0+/-0.6g; P<0.05). Unlike AB gilts, in AA and BB gilts uterine length was adapted to litter size, which led to longer (P<0.05) uteri for AA gilts (669+/-28 cm) compared to BB gilts (566+/-18 cm). Furthermore, embryos of AA gilts had heavier placentae (52.5+/-3.4 g) and larger implantation surface areas (309+/-19 cm(2)) than embryos of BB (42.0+/-2.3g, P<0.05; 256+/-12 cm(2), P<0.1) or AB (43.2+/-2.0 g, P<0.1; 257+/-11 cm(2), P<0.05) gilts. Results of this experiment show that the PRLR gene or a very closely linked gene affects porcine ovaries, uterus, and placenta in a way that might lead to differences in litter size. Since other genes and also environmental factors, however, might change the effect within the 112 days to parturition, it is preferable to state that the PRLR gene is a candidate gene for ovulation rate rather than for litter size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号