首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study tests the hypothesis that articular chondrocytes shift from a characteristically glycolytic to an oxidative energy metabolism during population expansion in monolayer. Bovine articular chondrocytes were cultured in monolayer under standard incubator conditions for up to 14 days. Cellular proliferation, oxygen consumption, lactate production, protein content, ROS generation and mitochondrial morphology were examined. Lactate release increased ∼5-fold within 1 week, but this was limited to ∼2-fold increase when normalized to cellular protein content. By contrast, per cell oxidative phosphorylation increased 98-fold in 1 week. The increase in oxidative phosphorylation was evident within 24 h, preceding cell proliferation and was associated with augmented reactive oxygen species generation. The autologous chondrocyte implantation procedure requires 14-21 days for population expansion. The alterations in metabolic phenotype we report within 7 days in vitro are thus pertinent to autologous chondrocyte implantation with significant implications for the chondrocyte functionality.  相似文献   

2.
Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.  相似文献   

3.
4.
BackgroundCurrent tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential.MethodsPorcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically.ResultsHuman chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions.ConclusionsSynoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage.  相似文献   

5.
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3α mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.  相似文献   

6.
Human mesenchymal stem cells (MSCs) reside under hypoxic conditions in vivo, between 4% and 7% oxygen. Differentiation of MSCs under hypoxic conditions results in inhibited osteogenesis, while chondrogenesis is unaffected. The reasons for these results may be associated with the inherent metabolism of the cells. The present investigation measured the oxygen consumption, glucose consumption and lactate production of MSCs during proliferation and subsequent differentiation towards the osteogenic and chondrogenic lineages. MSCs expanded under normoxia had an oxygen consumption rate of ~98 fmol/cell/h, 75% of which was azide-sensitive, suggesting that these cells derive a significant proportion of ATP from oxidative phosphorylation in addition to glycolysis. By contrast, MSCs differentiated towards the chondrogenic lineage using pellet culture had significantly reduced oxygen consumption after 24 h in culture, falling to ~12 fmol/cell/h after 21 days, indicating a shift towards a predominantly glycolytic metabolism. By comparison, MSCs retained an oxygen consumption rate of ~98 fmol/cell/h over 21 days of osteogenic culture conditions, indicating that these cells had a more oxidative energy metabolism than the chondrogenic cultures. In conclusion, osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes. The addition of TGF-β to chondrogenic pellet cultures significantly enhanced glycosaminoglycan accumulation, but caused no significant effect on cellular oxygen consumption. Thus, the differences between the energy metabolism of chondrogenic and osteogenic cultures may be associated with the culture conditions and not necessarily their respective differentiation.  相似文献   

7.
Expansion of human stem cells before cell therapy is typically performed at 20% O(2). Growth in these pro-oxidative conditions can lead to oxidative stress and genetic instability. Here, we demonstrate that culture of human mesenchymal stem cells at lower, physiological O(2) concentrations significantly increases lifespan, limiting oxidative stress, DNA damage, telomere shortening and chromosomal aberrations. Our gene expression and bioenergetic data strongly suggest that growth at reduced oxygen tensions favors a natural metabolic state of increased glycolysis and reduced oxidative phosphorylation. We propose that this balance is disturbed at 20% O(2), resulting in abnormally increased levels of oxidative stress. These observations indicate that bioenergetic pathways are intertwined with the control of lifespan and decisively influence the genetic stability of human primary stem cells. We conclude that stem cells for human therapy should be grown under low oxygen conditions to increase biosafety.  相似文献   

8.
The influence of oxygen on neural stem cell proliferation, differentiation, and apoptosis is of great interest for regenerative therapies in neurodegenerative disorders, such as Parkinson's disease. These oxygen depending mechanisms have to been considered for the optimization of neural cell culture conditions. In this study, we used a cell culture system with an oxygen‐permeable polytetrafluorethylene (PTFE) foil to investigate the effect of oxygen on metabolism and survival of neural cell lines in vitro. Human glial astrocytoma‐derived cells (GOS‐3) and rat pheochromacytoma cells (PC12) were cultured on the gas‐permeable PTFE foil as well as a conventional non oxygen‐permeable cell culture substrate at various oxygen concentrations. Analyses of metabolic activity, gene expression of apoptotic grade, and dopamine synthesis were performed. Under low oxygen partial pressure (2%, 5%) the anaerobic metabolism and apoptotic rate of cultured cells is diminished on PTFE foil when compared with the conventional culture dishes. In contrast, under higher oxygen atmosphere (21%) the number of apoptotic cells on the PTFE foil was enhanced. This culture model demonstrates a suitable model for the improvement of oxygen dependent metabolism under low oxygen conditions as well as for induction of oxidative stress by high oxygen atmosphere without supplementation of neurotoxins. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
10.
11.
Tissue engineering of articular cartilage from chondrocytes or stem cells is considered to be a potential aspect in the treatment of cartilage defects. In order to optimize culture conditions the influence of low oxygen tension (5%) - single or in combination with intermittent hydrostatic pressure (HP: 30/2 min on/off loading; 0.2 MPa) - on the biosynthetic activity (sulfate and proline incorporation) of human osteoarthritic chondrocytes cultured on collagen I/III membranes was investigated. Additionally, chondrogenesis from high density or monolayer cultures of bovine adherent bone marrow cells (aBMC) with and without chondrogenic medium supplements (CM) was analyzed by RT-PCR (mRNA expression of aggrecan and collagen type II). We could show that low oxygen tension increases significantly the biosynthesis of collagen I/III membrane-associated chondrocytes and even higher under co-stimulation with HP. While there is no chondrogenesis in monolayer cultures, CM induces expression of cartilage matrix molecules in high density cultures of aBMC which is even increased under the influence of low oxygen tension. Both, low oxygen tension and HP without CM are alone not sufficient stimuli for chondrogenesis. It can be concluded that low oxygen tension and HP might be useful tools in cartilage tissue engineering and that these physico-chemical factors promote but do not induce chondrogenesis under the given conditions.  相似文献   

12.
Differentiated chondrocytes, isolated from chick embryo cartilage, were cultured in monolayer, as aggregate or pellet. Aggregation of chondrocytes was accomplished by incubating 2 × 105 cells in a 5-μl drop of culture medium. Under all three conditions, the cells remained healthy and proliferated during culture. However, matrix production, as indicated by incorporation of [35S]sulphate into glycosaminoglycans, was greater in aggregated chondrocytes than in monolayers or pellets. In addition, aggregates consisting of a well defined number of cells, could easily be manipulated for experiments. Therefore aggregates provide a favourable model system to study factors modulating the metabolism of chondrocytes.  相似文献   

13.
Mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs) emerge as promising tools for tissue engineering, cell therapy, and drug screening. Their potential use in clinical applications requires the efficient production of differentiated cells at large scale. Glucose, amino acid, and oxygen metabolism play a key role in MSC and PSC expansion and differentiation. This review summarizes recent advances in the understanding of stem cell metabolism for reprogramming, self-renewal, and lineage commitment. From the reported data, efficient expansion of stem cells has been found to rely on glycolysis, while during differentiation stem cells shift their metabolic pathway to oxidative phosphorylation. During reprogramming, the reverse metabolic shift from oxidative phosphorylation to glycolysis has been observed. As a consequence, the demands for glucose and oxygen vary upon different phases of stem cell production. Accurate understanding of stem cell metabolism is critical for the rational design of culture parameters such as oxygen tension and feeding regime in bioreactors towards efficient integrated reprogramming, expansion, and differentiation processes at large scale.  相似文献   

14.
Embryo metabolism was evaluated during re‐expansion of in vitro produced bovine blastocysts collapsed with cytochalasin D (CCD) and incubated in the presence and absence of ouabain, a specific inhibitor of the Na+, K+ pump. Day 8 expanded blastocysts were treated for 2 to 4 hr with 20 μg/ml CCD. Four conditions were tested: untreated embryos and embryos collapsed with CCD and allowed to re‐expand for 4 hr in the presence of 0 M, 1 nM, or 1 μM ouabain. Incubation of collapsed embryos for 4 hr in the presence of 1 nM or 1 μM ouabain significantly inhibited blastocyst re‐expansion. Glucose, pyruvate, and amino lactate uptake/release were not significantly affected by ouabain treatment and did not correlate with the degree of blastocyst re‐expansion. Few variations in the uptake/release of amino acids by the embryos were observed. Ouabain treatment significantly decreased oxygen uptake which directly correlated with the degree of blastocyst re‐expansion. For embryos allowed to re‐expand in the presence or absence of ouabain, a direct correlation was observed between the uptake of oxygen and of glucose. One mM cyanide or 2,4 dinitrophenol inhibited blastocyst re‐expansion although 0.01 and 0.1 mM were ineffective. This study indicates a role for oxidative metabolism in providing the energy necessary for blastocoel expansion in the bovine. Nevertheless, blastocyst expansion is relatively insensitive to inhibition of oxidative phosphorylation indicating the ability of the bovine blastocyst to adapt to hypoxic conditions. Mol. Reprod. Dev. 53:171–178, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Wiseman M  Bader DL  Reisler T  Lee DA 《Biorheology》2004,41(3-4):283-298
This study tests the hypothesis that expansion by passage in monolayer influences the response of isolated articular chondrocytes to dynamic compression. Chondrocytes, isolated from bovine articular cartilage, were seeded in monolayer and passaged 4 times (P1-4). For assessment of chondrocytic and fibroblastic phenotype, freshly isolated and passaged cells were seeded on glass coverslips or in 2% alginate beads and cultured for 7 days in DMEM + 10% FCS. Samples were assayed for DNA and GAG content and stained for collagen types I and II. In separate experiments, freshly isolated or passaged chondrocytes were seeded at 10 x 10(6) cells.ml(-1) in 4% cylindrical agarose constructs and subjected to 15% dynamic compressive strain at 1 Hz for 24 hours. [(3)H]-thymidine incorporation, SO(4) incorporation and nitrite release were analysed. Immediately following isolation (P0), chondrocytes seeded in alginate expressed high levels of type II collagen, but did not stain for type I collagen. Following repeat passage the cells expressed enhanced levels of type I collagen, with an associated reduction in type II collagen staining. These data indicate a modulation to a fibroblastic phenotype during monolayer expansion which was not rapidly reversed by culture in a 3D hydrogel. Dynamic compression down-regulated SO(4) incorporation at P0, but did not affect [(3)H]-thymidine incorporation. By contrast the incorporation of both SO(4) and [(3)H]-thymidine was enhanced by dynamic compression at both P1 and to a lesser extent P2. SO(4) and [(3)H]-thymidine incorporation were inhibited at P3 and P4. Nitrite release was down-regulated by dynamic compression at all passages. These data demonstrate a clear modulation in the response of bovine articular chondrocytes to dynamic compression following passage in monolayer.  相似文献   

16.
Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

17.
Exogenous ATP has been shown to cause a rapid and reversible increase in permeability in transformed 3T3 cells (3T6 and SV3T3) but not in untransformed 3T3 cells. The cells remain viable, but lose intracellular acid-soluble pools. Treatment of transformed cells with ATP greatly reduces incorporation of 14C-leucine into protein, which is restored by the incubation of the cells with Dulbecco's modified Eagle's medium or by the external additions of certain ions and energy sources. tRNA is not required for the restoration of protein synthesis. In the permeabilized cells the energy for protein synthesis can be provided by glycolysis, oxidative phosphorylation, or direct addition of ATP. These studies demonstrate the usefulness of this method for studying the control of metabolism and macromolecular synthesis in monolayer cultures of transformed mammalian cells.  相似文献   

18.
19.
13C‐metabolic flux analysis was used to understand copper deficiency‐related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein‐producing CHO cells. Stationary‐phase labeling experiments with U‐13C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed‐batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC‐MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%–79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%–23% and 74%, respectively) compared with the Cu‐containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper‐deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1179–1186, 2015  相似文献   

20.
Chondrocytes grown in monolayer culture at low density, with serum added, either dedifferentiate after several days whereby their cell shape changes or they are overgrown by fibroblast-like cells. The aim of this study was to optimize the cultivation of chondrocytes in monolayer culture and to slow down their transformation or their overgrowth by fibroblast-like cells. For this purpose freshly isolated chondrocytes of cartilage anlagen from 17-day-old mouse embryos were grown on plastic or collagen type II-coated substrates. With this model: (a) chondrocytes grown on plastic substrates had almost completely changed to fibroblast-like cells after 5 days in culture. (b) When grown on collagen type II, the chondrocytes maintained their round phenotype for more than 2 weeks in culture. (c) Immunomorphological investigations showed that chondrocytes produce collagen type II and fibronectin and express specific surface receptors (integrins of the β1-group) on the membrane from day 1 until the end of the culture period when grown on collagen type II. (d) Treatment with β1-integrin antibodies clearly reduces chondrocyte adhesion on collagen type II by about 70%. Hence, these data indicate that the most probable influence of collagen type II on cellular behaviour depends on the integrins participating in a chondrocyte—collagen type II interaction, and this model represents a pure chondrocyte culture which allows cell growth for an extended period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号