首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the naïve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses.  相似文献   

2.
Human immunodeficiency virus (HIV) is characterized by immune activation, while chronic malaria is associated with elevated interleukin-10 (IL-10) levels. How these apparently antagonizing forces interact in the coinfected host is poorly understood. Using a rhesus macaque model of simian immunodeficiency virus (SIV)-Plasmodium fragile coinfection, we evaluated how innate immune effector cells affect the balance between immune activation and regulation. In vitro Toll-like receptor (TLR) responses of peripheral blood myeloid dendritic cells (mDC) and monocytes were temporarily associated with acute parasitemic episodes and elevated plasma IL-10 levels. Prolonged infection resulted in a decline of mDC function. Monocytes maintained TLR responsiveness but, in addition to IL-12 and tumor necrosis factor alpha, also produced IL-10. Consistent with the role of spleen in the clearance of parasite-infected red blood cells, coinfected animals also had increased splenic IL-10 mRNA levels. The main cellular source of IL-10 in the spleens of coinfected animals, however, was not splenic macrophages but T cells, suggesting an impairment of adaptive immunity. In contrast to those in spleen, IL-10-positive cells in axillary lymph nodes of coinfected animals were predominantly mDC, reminiscent of the immunosuppressive phenotype of peripheral blood mDC. Concurrent with IL-10 induction, however, SIV infection promoted elevated systemic IL-12 levels. The continuously increasing ratio of plasma IL-12 to IL-10 suggested that the overall host response in SIV-P. fragile-coinfected animals was shifted toward immune activation versus immune regulation. Therefore, SIV-P. fragile coinfection might be characterized by earlier manifestation of immune dysfunction and exhaustion than that of single-pathogen infections. This could translate into increased morbidity in HIV-malaria-coinfected individuals.  相似文献   

3.
4.
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Δnef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Δnef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (105 to 107 RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Δnef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Δnef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.  相似文献   

5.
6.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

7.
Perturbation of the equilibrium between human immunodeficiency virus type 1 (HIV-1) and the infected host by administering antiretroviral agents has revealed the rapid turnover of both viral particles and productively infected cells. In this study, we used the infusion of simian immunodeficiency virus (SIV) particles into rhesus macaques to obtain a more accurate estimate of viral clearance in vivo. Consistently, exogenously infused virions were cleared from plasma with an extremely short half-life, on the order of minutes (a mean of 3.3 min). This new estimate is ~100-fold lower than the upper bound of 6 h previously reported for HIV-1 in infected humans. In select animals, multiple tissues were collected at the completion of each experiment to track the potential sites of virion clearance. Detectable levels of SIV RNA were found in lymph nodes, spleen, lungs, and liver, but not in other tissues examined. However, only ~1 to 10% or less of the infused virions were accounted for by the thorough tissue sampling, indicating that the vast majority of the infused particles must have been degraded over a short period of time. Should the rapid clearance of virions described here be applicable to infected patients, then HIV-1 production and thus the number of productively infected CD4+ T lymphocytes or the viral burst size must be proportionally higher than previous minimal estimates.  相似文献   

8.
9.
We used the rhesus macaque model of heterosexual human immunodeficiency virus (HIV) transmission to test the hypothesis that in vitro measures of macrophage tropism predict the ability of a primate lentivirus to initiate a systemic infection after intravaginal inoculation. A single atraumatic intravaginal inoculation with a T-cell-tropic molecular clone of simian immunodeficiency virus (SIV), SIVmac239, or a dualtropic recombinant molecular clone of SIV, SIVmac239/1A11/239, or uncloned dualtropic SIVmac251 or uncloned dualtropic simian/human immunodeficiency virus (SHIV) 89.6-PD produced systemic infection in all rhesus macaques tested. However, vaginal inoculation with a dualtropic molecular clone of SIV, SIVmac1A11, resulted in transient viremia in one of two rhesus macaques. It has previously been shown that 12 intravaginal inoculations with SIVmac1A11 resulted in infection of one of five rhesus macaques (M. L. Marthas, C. J. Miller, S. Sutjipto, J. Higgins, J. Torten, B. L. Lohman, R. E. Unger, H. Kiyono, J. R. McGhee, P. A. Marx, and N. C. Pedersen, J. Med. Primatol. 21:99–107, 1992). In addition, SHIV HXBc2, which replicates in monkey macrophages, does not infect rhesus macaques following multiple vaginal inoculations, while T-cell-tropic SHIV 89.6 does (Y. Lu, P. B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045–3050, 1996). These results demonstrate that in vitro measures of macrophage tropism do not predict if a SIV or SHIV will produce systemic infection after intravaginal inoculation of rhesus macaques. However, we did find that the level to which these viruses replicate in vivo after intravenous inoculation predicts the outcome of intravaginal inoculation with each virus.  相似文献   

10.
The ability of recombinant rhesus interleukin-12 (rMamu-IL-12) administration during acute simian immunodeficiency virus SIVmac251 infection to influence the quality of the antiviral immune responses was assessed in rhesus macaques. Group I (n = 4) was the virus-only control group. Group II and III received a conditioning regimen of rMamu-IL-12 (10 and 20 microg/kg, respectively, subcutaneously [s.c.]) on days -2 and 0. Thereafter, group II received 2 microg of IL-12 per kg and group III received 10 microg/kg s.c. twice a week for 8 weeks. On day 0 all animals were infected with SIVmac251 intravenously. While all four group I animals and three of four group II animals died by 8 and 10 months post infection (p.i.), all four group III animals remained alive for >20 months p.i. The higher IL-12 dose led to lower plasma viral loads and markedly lower peripheral blood mononuclear cell and lymph node proviral DNA loads. During the acute viremia phase, the high-IL-12-dose monkeys showed an increase in CD3(-) CD8 alpha/alpha(+) and CD3(+) CD8 alpha/alpha(+) cells and, unlike the control and low-IL-12-dose animals, did not demonstrate an increase in CD4(+) CD45RA(+) CD62L(+) naive cells. The high-IL-12-dose animals also demonstrated that both CD8 alpha/alpha(+) and CD8 alpha/beta(+) cells produced antiviral factors early p.i., whereas only CD8 alpha/beta(+) cells retained this function late p.i. Long-term survival correlated with sustained high levels of SIV gag/pol and SIV env cytotoxic T lymphocytes and retention of high memory responses against nominal antigens. This is the first study to demonstrate the capacity of IL-12 to significantly protect macaques from SIV-induced disease, and it provides a useful model to more precisely identify correlates of virus-specific disease-protective responses.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) subtype C is responsible for more than 56% of all infections in the HIV and AIDS pandemic. It is the predominant subtype in the rapidly expanding epidemic in southern Africa. To develop a relevant model that would facilitate studies of transmission, pathogenesis, and vaccine development for this subtype, we generated SHIV(MJ4), a simian/human immunodeficiency virus (SHIV) chimera based on HIV-1 subtype C. SHIV(MJ4) contains the majority of env, the entire second exon of tat, and a partial sequence of the second exon of rev, all derived from a CCR5-tropic, primary isolate envelope clone from southern Africa. SHIV(MJ4) replicated efficiently in human, rhesus, and pig-tailed macaque peripheral blood mononuclear cells (PBMCs) in vitro but not in CEMx174 cells. To assess in vivo infectivity, SHIV(MJ4) was intravenously inoculated into four rhesus macaques (Macaca mulatta). All four animals became infected as determined through virus isolation, PCR analysis, and viral loads of 10(7) to 10(8) copies of viral RNA per ml of plasma during the primary infection phase. We have established a CCR5-tropic SHIV(MJ4)/rhesus macaque model that may be useful in the studies of HIV-1 subtype C immunology and biology and may also facilitate the evaluation of vaccines to control the spread of HIV-1 subtype C in southern Africa and elsewhere.  相似文献   

12.
Identification of transmitted/founder simian immunodeficiency virus (SIV) envelope sequences responsible for infection may prove critical for understanding HIV/SIV mucosal transmission. We used single genome amplification and phylogenetic analyses to characterize transmitted/founder SIVs both in the inoculum and in immunized-infected rhesus monkeys. Single genome amplification of the SIVsmE660 inoculum revealed a maximum diversity of 1.4%. We also noted that the consensus sequence of the challenge stock differed from the vaccine construct in 10 amino acids including 3 changes in the V4 loop. Viral env was prepared from rhesus plasma in 3 groups of 6 immunized with vesicular stomatitis virus (VSV) vectors and boosted with Semliki forest virus (SFV) replicons expressing (a) SIVsmE660 gag-env (b) SIVsmE660 gag-env plus rhesus GM-CSF and (c) control influenza hemagglutinin protein. Macaques were immunized twice with VSV-vectors and once with SFV vector and challenged intrarectally with 4000 TCID50. Single genome amplification characterized the infections of 2 unprotected animals in the gag-env immunized group, both of which had reduced acute plasma viral loads that ended as transient infections indicating partial immune control. Four of 6 rhesus were infected in the gag-env + GM-CSF group which demonstrated that GM-CSF abrogated protection. All 6 animals from the control group were infected having high plasma viral loads. We obtained 246 full-length envelope sequences from SIVsmE660 infected macaques at the peak of infection and determined the number of transmitted/founder variants per animal. Our analysis found that 2 of 2 gag-env vaccinated but infected macaques exhibited single but distinct virus envelope lineages whereas rhesus vaccinated with gag-env-GM-CSF or HA control exhibited both single and multiple env lineages. Because there were only 2 infected animals in the gag-env vaccinated rhesus compared to 10 infected rhesus in the other 2 groups, the significance of finding single env variants in the gag-env vaccinated group could not be established.  相似文献   

13.
We have shown that following priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) recombinants, boosting with gp140 envelope protein enhances acute-phase protection against intravenous simian/human immunodeficiency virus (SHIV)89.6P challenge compared to results with priming and no boosting or boosting with an HIV polypeptide representing the CD4 binding site of gp120. We retrospectively analyzed antibodies in sera and rectal secretions from these same macaques, investigating the hypothesis that vaccine-elicited nonneutralizing antibodies contributed to the better protection. Compared to other immunized groups or controls, the gp140-boosted group exhibited significantly greater antibody activities mediating antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell-mediated viral inhibition (ADCVI) in sera and transcytosis inhibition in rectal secretions. ADCC and ADCVI activities were directly correlated with antibody avidity, suggesting the importance of antibody maturation for functionality. Both ADCVI and percent ADCC killing prechallenge were significantly correlated with reduced acute viremia. The latter, as well as postchallenge ADCVI and ADCC, was also significantly correlated with reduced chronic viremia. We have previously demonstrated induction by the prime/boost regimen of mucosal antibodies that inhibit transcytosis of SIV across an intact epithelial cell layer. Here, antibody in rectal secretions was significantly correlated with transcytosis inhibition. Importantly, the transcytosis specific activity (percent inhibition/total secretory IgA and IgG) was strongly correlated with reduced chronic viremia, suggesting that mucosal antibody may help control cell-to-cell viral spread during the course of infection. Overall, the replicating Ad5hr-HIV/SIV priming/gp140 protein boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities associated with control of both acute and chronic viremia.A major goal of human immunodeficiency virus (HIV) vaccine development is the elicitation of protective antibodies capable of neutralizing the diversity of isolates in the worldwide pandemic (6, 61). Indeed, passively administered neutralizing antibodies have been shown to protect against pathogenic HIV/simian immunodeficiency virus (SIV) challenge in rhesus macaque models (4, 44, 45, 57). However, the extent to which other antibody-mediated protective mechanisms impact HIV/SIV infection is still unclear. Whether these alternate biologic activities would augment vaccine-induced protection has not been definitively established.In HIV-infected individuals, as in SIV- or simian/human immunodeficiency virus (SHIV)-infected rhesus macaques, systemic nonneutralizing antibodies appear early during acute infection, often preceding a neutralizing antibody response (21, 55). Although neutralizing antibody activity is critical for sterilizing immunity, recent studies suggest that antibodies may contribute to protection by other functional activities, such as antibody-dependent cellular cytotoxicity (ADCC) (20, 29), antibody-dependent cell-mediated viral inhibition (ADCVI) (22, 23), and transcytosis inhibition (19, 35, 59). Antibodies in secretions may directly block viral entry into intestinal and endocervical tissues by inhibiting transcytosis across epithelium, whereas local or serum-derived antibodies that mediate ADCC or ADCVI may exert protective effects by eliminating small foci of infected cells during the brief window of time that exists between transmission of virus across an epithelial cell barrier to the lamina propria and subsequent systemic spread (32). In support of this notion, mutation of the Fc portion of the broadly neutralizing monoclonal antibody, IgGb12, thereby preventing interaction with the FcγR on effector cells, rendered the antibody less able to mediate protection upon subsequent passive transfer and challenge of rhesus macaques (34). Thus, neutralizing antibodies themselves may mediate protection by additional functional activities.ADCC bridges innate and adaptive immunity. Mechanistically, it involves FcγR-bearing effector cells, such as NK cells, macrophages, neutrophils, and γδ T cells, and antibodies specific for antigens expressed on the surface of target cells. Upon interaction of these three components, the target cells are killed. Since the effector cells are not major histocompatibility complex restricted, ADCC is broadly applicable to diverse populations. Because the antibody specificity need not be restricted to neutralizing epitopes, ADCC may increase the breadth of antibody reactivity. In fact, we have shown that an HIV clade B immunization regimen elicited antibodies that mediated ADCC across several HIV clades (28). Antibodies that mediate ADCC have been shown to arise early in infection, before neutralizing antibodies (55, 60). They are present in the majority of infected individuals, and they have been associated with slow disease progression following both HIV and SIV infection (5, 8).ADCVI is closely related to ADCC, also requiring antibody that forms a bridge between an infected target cell and an FcγR-bearing effector cell (24). However, ADCVI is a broader activity not restricted solely to target cell lysis but, rather, encompassing several mechanisms by which viral replication following infection of target cells is inhibited. Thus, it may include ADCC activity but also involve noncytotoxic mechanisms of virus control, such as the secretion of inhibitory chemokines or FcγR-mediated phagocytosis of immune complexes (24, 25).Most HIV infections occur via a mucosal route, including cervicovaginal and rectal tissues (39, 52). Several nonmutually exclusive mechanisms for HIV-1 transmission across mucosal epithelia have been proposed (13, 56). Transcytosis of infectious virus across polarized columnar epithelial cells following contact of virally infected cells with apical epithelial cell surfaces is one mechanism for mucosal HIV entry (12). Rather than fusion and infection, interactions between the viral envelope proteins and epithelial surface molecules, such as glycosphingolipid galactosyl-ceramide (GalCer) (13, 47), an important component of endocytotic “raft” membrane microdomains, lead to transcytosis of the virus across the epithelial barrier and its trapping by submucosal dendritic cells which disseminate it to their target CD4+ T cells. Studies have shown that mucosal immunoglobulin A (IgA) antibody, a major component of the mucosal immune response, could block mucosal HIV-1 entry via transcytosis in vitro (2, 19). Therefore, mucosal antibodies blocking adherence of virus to epithelial cells and preventing HIV-1 transcytosis across the epithelial barrier and subsequent CD4+ T cell infection may afford additional protection against HIV/SIV infection.We have been pursuing a replicating adenovirus (Ad)-HIV/SIV prime/protein subunit boost AIDS vaccine approach (30, 51), which has elicited strong, durable protection against HIV, SIV, and SHIV challenges (11, 18, 41, 42, 50). An underlying goal of these studies has been elucidation of immune responses that correlate with protective efficacy. Recently, we studied the contribution of novel protein boosts to immunogenicity and protective efficacy in a SHIV89.6P model (49). Immunized rhesus macaques were primed with Ad type 5 host range mutant (Ad5hr)-HIV89.6Pgp140, -SIV239gag, and -SIV239nef recombinants. One group was not boosted, one was boosted with HIV89.6P gp140ΔCFI protein (gp140 envelope with deletions in the cleavage site, fusion peptide, and part of the interspace between the two heptad repeats) (40), and one was boosted with a novel HIV-1 polypeptide “peptomer” representing the CD4 binding site of the envelope (54). The best protection was seen in the gp140-boosted group, with significant reductions in both acute and chronic viremia. Although Env-specific antibody and cellular responses were readily detected, none directly correlated with the better protection. Furthermore, neutralizing antibodies against SHIV89.6P did not develop until 4 weeks postchallenge. Therefore, we hypothesized that vaccine-elicited nonneutralizing anti-Env antibodies might have contributed to the better control of acute and/or chronic viremia in the gp140 group. Here, we report retrospective evaluations of sera and rectal secretions from macaques in this comparative study for serum binding antibody avidity, an important characteristic of functional antibodies (38, 58), and nonneutralizing activities of systemic and mucosal antibodies, including ADCC, ADCVI, and transcytosis inhibition.  相似文献   

14.
15.
The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge.Immune containment of human immunodeficiency virus (HIV-1) is complicated by the continuous genetic evolution of the virus. The evolution of the HIV-1 envelope is shaped, in part, by selective pressure of neutralizing antibodies (6, 12, 27, 34-36, 40). Changes in envelope sequence and glycosylation patterns following infection can allow the virus to escape neutralization. If the rate and extent of envelope sequence evolution following infection can be decreased, immune containment of HIV-1 may be improved.One possible strategy for modifying envelope evolution is vaccination prior to infection. A vaccine-elicited memory immune response could focus and potentiate the humoral immune response that develops following infection. The possible consequence of vaccination has not been assessed, however, because of the limited number of human volunteers who have received highly immunogenic envelope immunogens and subsequently became infected with HIV-1.Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides a powerful model to study the effect of vaccination on envelope evolution. Like HIV-1, SIV employs both the CD4 molecule and the chemokine receptor CCR5 to enter a target cell and cause an AIDS-like disease in macaques (16, 22). Both SIV and HIV-1 envelopes are heavily glycosylated, with approximately 50% of their mass derived from carbohydrates (14, 21). SIV and HIV-1 envelopes share approximately 40% amino acid homology (10, 11) and have overlapping variable and constant regions, although the variable region 3 (V3) of HIV-1 envelope does not align with the homologous region of SIV envelope (7). Following SIV infection in rhesus monkeys, SIV envelope evolves most rapidly in variable regions 1 and 4 (V1 and V4, respectively), leading to nucleotide additions, deletions, and/or mutations that can potentially translate to changes in glycosylation (7, 9, 13, 15, 19, 29, 30).Studies done to characterize SIV neutralization suggest that it occurs through mechanisms similar to those seen in HIV-1 neutralization. Amino acid mutations in the envelope of both viruses contribute to the evasion of antibody binding directly by changing recognition sequences and/or envelope conformation. In addition, the glycosylation of envelope serves as a further obstacle to antibody recognition (20, 33, 40). Considerable effort has been devoted to defining neutralizing epitopes of the HIV and SIV envelopes. The known neutralizing human monoclonal antibodies elicited during natural infection are directed against HIV-1 envelope target sites on both gp120 and gp41, including the V3 region, the CD4 binding site, oligomannose residues of gp120, and gp41 (17, 31). The neutralizing epitope profile of SIV envelope includes the CD4 binding site and gp41 but not the V3 region. There is conflicting evidence as to whether V1, V2, and/or V4 of SIV are targets for antibody neutralization (15, 18, 19). The present study addresses whether vaccine-induced immune responses accelerate the generation of autologous neutralizing antibodies following SIV challenge in rhesus monkeys and how this humoral immune response can potentially shape viral sequence evolution.  相似文献   

16.
17.
Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8+ T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8+ T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8+ T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4+ T cells.None of the vaccine regimens tested in human immunodeficiency virus (HIV) vaccine efficacy trials to date have either reduced the rate of HIV infection or reduced the level of HIV replication. Structural features and the enormous variability of the envelope glycoprotein have frustrated efforts to induce broadly reactive neutralizing antibodies against HIV (10). Investigators have therefore focused their attention on T-cell-based vaccines (40). Simian immunodeficiency virus (SIV) challenge of rhesus macaques vaccinated with T-cell-based vaccines has shown that it is possible to control virus replication after SIV infection (22, 41, 42). The recent STEP trial of a recombinant Ad5-vectored vaccine was widely seen as an important test of this concept (http://www.hvtn.org/media/pr/step111307.html) (9, 25). Unfortunately, vaccinees became infected at higher rates than the controls (9). While it is still not clear what caused the enhanced infection rate in the vaccinated group, future Ad5-based human vaccine trials may be difficult to justify. We therefore need to develop new vaccine vectors for delivering SIV and HIV genes. Several other viral vectors currently under consideration include nonreplicating adenovirus (Ad)-based vectors (1, 21, 22), Venezuelan equine encephalitis (VEE) virus (12, 20), adeno-associated virus (AAV) (19), modified vaccinia virus Ankara (MVA) (3, 4, 13, 15, 18, 38), NYVAC (6), cytomegalovirus (CMV) (16), and replicating Ad (30). However, only a few of these have shown promise in monkey trials using rigorous SIV challenges.We explored whether the small (11-kb) yellow fever vaccine flavivirus 17D (YF17D) might be a suitable vector for HIV vaccines. The YF17D vaccine is inexpensive, production and quality control protocols already exist, and it disseminates widely in vivo after a single dose (27). Importantly, methods for the manipulation of the YF17D genome were recently established (7, 8, 24, 28). This effective vaccine has been safely used on >400 million people in the last 70 years (27). Additionally, the YF17D strain elicits robust CD8+ T-cell responses in humans (26). Chimeric YF17D is presently being developed as a vaccine for other flaviviruses, such as Japanese encephalitis virus (28), dengue virus (14), and West Nile virus (29). Inserts expressing a malaria B-cell epitope have been engineered into the E protein of YF17D (7). In murine models, recombinant YF17D viruses have generated robust and specific responses to engineered antigens inserted between the 2B and NS3 proteins in vivo (24, 35).We first used the YF17D vaccine virus to infect four Mamu-A*01-positive macaques. The vaccine virus replicated in these four animals and induced neutralizing antibodies in all four macaques by 2 weeks postvaccination (Fig. 1A and B). To monitor the CD8+ T-cell immune response against YF17D, we scanned its proteome for peptides that might bind to Mamu-A*01 using the major histocompatibility complex (MHC) pathway algorithm (31). We synthesized the 52 YF17D-derived peptides most likely to bind to Mamu-A*01 based on their predicted affinity for this MHC class I molecule. We then used a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay to screen these peptides in YF17D-immunized animals at several time points after vaccination and discovered that four Mamu-A*01-binding peptides, LTPVTMAEV (LV91285-1293), VSPGNGWMI (VI93250-3258), MSPKGISRM (MM92179-2187), and TTPFGQQRVF (TF102853-2862), were recognized in vivo (Fig. (Fig.1C).1C). Using a previously reported protocol (26), we also observed CD8+ T-cell activation in all four animals (Fig. 1D and E). Thus, as was observed previously, the YF17D vaccine virus replicates in Indian rhesus monkeys (36) and induces neutralizing antibodies, yellow fever 17D-specific Mamu-A*01-restricted CD8+ T-cell responses, and CD8+ T-cell activation.Open in a separate windowFIG. 1.YF17D replicates and induces neutralizing antibodies, virus-specific CD8+ T cells, and the activation of CD8+ T cells in rhesus macaques. (A) Replication of YF17D during the first 10 days after vaccination with two different doses, as measured by quantitative PCR (Q-PCR) using the following primers: forward primer YF-17D 10188 (5′-GCGGATCACTGATTGGAATGAC-3′), reverse primer YF-17D 10264 (5′-CGTTCGGATACGATGGATGACTA-3′), and probe 6-carboxyfluorescein (6Fam)-5′-AATAGGGCCACCTGGGCCTCCC-3′-6-carboxytetramethylrhodamine (TamraQ). (B) Titer of neutralizing antibodies determined at 2 and 5 weeks after YF17D vaccination. (C) Fresh PBMC from vaccinees (100,000 cells/well) were used in IFN-γ ELISPOT assays (41) to assess T-cell responses against YF17D. We used 4 epitopes (LTPVTMAEV [LV91285-1293], VSPGNGWMI [VI93250-3258], MSPKGISRM [MM92179-2187], and TTPFGQQRVF [TF102853-2862]) predicted to bind to Mamu-A*01 as defined by the MHC pathway algorithm (31). All IFN-γ ELISPOT results were considered positive if they were ≥50 SFC/106 PBMC and ≥2 standard deviations over the background. (D) Identification of activated CD8+ T cells after vaccination with YF17D based on the expression of the proliferation and proapoptotic markers Ki-67 and Bcl-2, respectively (26). We stained whole blood cells with antibodies against CD3 and CD8. We then permeabilized and subsequently labeled these cells with Bcl-2- and Ki-67-specific antibodies. The flow graphs were gated on CD3+ CD8+ lymphocytes. (E) Expression kinetics of Ki-67 and Bcl-2 in CD8+ T cells after vaccination with YF17D.We next engineered the YF17D vaccine virus to express amino acids 45 to 269 of SIVmac239 Gag (rYF17D/SIVGag45-269) by inserting a yellow fever codon-optimized sequence between the genes encoding the viral proteins E and NS1. This recombinant virus replicated and induced neutralizing antibodies in mice (data not shown). We then tested the rYF17D/SIVGag45-269 construct in six Mamu-A*01-positive Indian rhesus macaques. We found evidence for the viral replication of rYF17D/SIVGag45-269 for five of these six macaques (Fig. (Fig.2A).2A). However, neutralizing antibodies were evident for all six animals at 2 weeks postvaccination (Fig. (Fig.2B).2B). Furthermore, all animals developed SIV-specific CD8+ T cells after a single immunization with rYF17D/SIVGag45-269 (Fig. (Fig.2C).2C). To test whether a second dose of this vaccine could boost virus-specific T-cell responses, we administered rYF17D/SIVGag45-269 (2.0 × 105 PFU) to four macaques on day 28 after the first immunization and monitored cellular immune responses. With the exception of animal r04091, the rYF17D/SIVGag45-269 boost did not increase the frequency of the vaccine-induced T-cell responses. This recombinant vaccine virus also induced CD8+ T-cell activation in the majority of the vaccinated animals (Fig. (Fig.2D2D).Open in a separate windowFIG. 2.rYF17D/SIVGag45-269 replicates and induces neutralizing antibodies, virus-specific CD8+ T cells, and the activation of CD8+ T cells in rhesus macaques. (A) Replication of rYF17D/SIVGag45-269 during the first 10 days after vaccination with two different doses as measured by Q-PCR using the YF17D-specific primers described in the legend of Fig. Fig.1.1. (B) Titer of neutralizing antibodies determined at 2 and 5 weeks after rYF17D/SIVGag45-269 vaccination. The low levels of neutralization for animal r02013 were observed in three separate assays. (C) Fresh PBMC from vaccinees (100,000 cells/well) were used in IFN-γ ELISPOT assays to assess T-cell responses against the YF17D vector (red) and the SIV Gag(45-269) insert (black) at several time points postvaccination. We measured YF17D-specific responses using the same epitopes described in the legend of Fig. Fig.1.1. For SIV Gag-specific responses, we used 6 pools of 15-mers overlapping by 11 amino acids spanning the entire length of the SIVmac239 Gag insert. In addition, we measured Mamu-A*01-restricted responses against the dominant Gag181-189CM9 and subdominant Gag254-262QI9 epitopes. Four animals received a second dose of rYF17D/SIVGag45-269 on day 28 after the first vaccination (dashed line). (D) Expression kinetics of Ki-67 and Bcl-2 in CD8+ T cells after vaccination with rYF17D/SIVGag45-269. This assay was performed as described in the legend of Fig. Fig.11.We could not detect differences in vaccine-induced immune responses between the group of animals vaccinated with YF17D and the group vaccinated with rYF17D/SIVGag45-269. There was, however, considerable animal-to-animal variability. Animal r02034, which was vaccinated with YF17D, exhibited massive CD8+ T-cell activation (a peak of 35% at day 14) (Fig. (Fig.1E),1E), which was probably induced by the high levels of viral replication (16,800 copies/ml at day 5) (Fig. (Fig.1A).1A). It was difficult to see differences between the neutralizing antibody responses induced by YF17D and those induced by rYF17D/SIVGag45-269 (Fig. (Fig.1B1B and and2B).2B). However, neutralizing antibodies in animal r02013 decreased by 5 weeks postvaccination. It was also difficult to detect differences in the YF17D-specific CD8+ T-cell responses induced by these two vaccines. Peak Mamu-A*01-restricted CD8+ T-cell responses against YF17D ranged from barely detectable (animal r02110 at day 11) (Fig. (Fig.1C)1C) to 265 spot-forming cells (SFCs)/106 peripheral blood mononuclear cells (PBMC) (animal r02034 at day 28) (Fig. (Fig.1C).1C). Similarly, three of the rYF17D/SIVGag45-269-vaccinated animals (animals r04091, r04051, and r02013) made low-frequency CD8+ T-cell responses against the Mamu-A*01-bound YF17D peptides, whereas the other three animals (animals r03130, r02049, and r02042) recognized these epitopes with responses ranging from 50 to 200 SFCs/106 PBMC (Fig. (Fig.2C).2C). For almost every rYF17D/SIVGag45-269-vaccinated animal, the Gag181-189CM9-specific responses (range, 50 to 750 SFCs/106 PBMC) were higher than those generated against the Mamu-A*01-restricted YF17D epitopes (range, 0 to 175 SFCs/106 PBMC), suggesting that the recombinant virus replicated stably in vivo (Fig. (Fig.2C).2C). Thus, the recombinant YF17D virus replicated and induced both virus-specific neutralizing antibodies and CD8+ T cells that were not demonstrably different from those induced by YF17D alone.Most viral vectors are usually more efficient after a prime with DNA or recombinant BCG (rBCG) (4, 11, 15, 18). We therefore used rYF17D/SIVGag45-269 to boost two macaques that had been primed with rBCG expressing SIV proteins (Fig. (Fig.3A).3A). We detected no SIV-specific responses after either of the two priming rBCG vaccinations. Unfortunately, while the recombinant YF17D virus replicated well in animal r01056, we found evidence for only low levels of replication of rYF17D/SIVGag45-269 on day 5 postvaccination for animal r01108 (7 copies/ml) (Fig. (Fig.3B).3B). Both animals, however, generated neutralizing antibodies at 2 weeks postvaccination (Fig. (Fig.3C).3C). Encouragingly, we detected high-frequency CD8+ T-cell responses in the Mamu-A*01-positive macaque (animal r01056) after boosting with rYF17D/SIVGag45-269 (Fig. 3D to F). These responses were directed mainly against the Mamu-A*01-restricted Gag181-189CM9 epitope, which is contained in the peptide pool Gag E (Fig. (Fig.3D).3D). Furthermore, the boost induced a massive activation of animal r01056''s CD8+ T cells, peaking at 35% at 17 days postvaccination (Fig. (Fig.3E).3E). Of these activated CD8+ T cells, approximately 10% were directed against the Gag181-189CM9 epitope, with a frequency of 3.5% of CD8+ T cells (Fig. (Fig.3E).3E). These epitope-specific CD8+ T cells made IFN-γ, tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein 1β (MIP-1β), and degranulated (Fig. (Fig.3F3F and data not shown). Thus, an rBCG prime followed by a recombinant yellow fever 17D boost induced polyfunctional antigen-specific CD8+ T cells.Open in a separate windowFIG. 3.rYF17D/SIVGag45-269 vaccination induced a robust expansion of Gag-specific responses in an rBCG-primed macaque. (A) Vaccination scheme. We immunized two rhesus macaques with rBCG intradermally (i.d.) (2.0 × 105 CFU), rBCG orally (107 CFU), and rYF17D/SIVGag45-269 subcutaneously (2.0 × 105 PFU) at 6-month intervals. rBCG was engineered to express 18 minigenes containing sequences of Gag, Vif, Nef, Rev, and Tat from SIVmac239. (B) Replication of rYF17D/SIVGag45-269 during the first 10 days after vaccination as measured by Q-PCR using the YF17D-specific primers described in the legend of Fig. Fig.1.1. (C) Titer of neutralizing antibodies determined at 2 and 5 weeks after rYF17D/SIVGag45-269 vaccination. (D) Fresh PBMC from animal r01056 (100,000 cells/well) were used in IFN-γ ELISPOT assays to assess T-cell responses against the YF17D vector (red) and the SIV Gag(45-269) insert (black) at several time points postvaccination. (E) Kinetics of CD8+ T-cell activation (as described in the legend of Fig. Fig.1)1) and expansion of Gag181-189CM9-specific CD8+ T cells in animal r01056 after vaccination with rYF17D/SIVGag45-269. (F) Vaccination with rYF17D/SIVGag45-269 induced robust CD8+ T-cell responses against Gag181-189CM9 in r01056. CD8+ T-cell activation (Ki-67+/Bcl-2) for baseline and day 13 are shown. Gag181-189CM9-specific responses were measured by tetramer staining and intracellular cytokine staining (ICS) with antibodies against MIP-1β and IFN-γ.Vaccine-induced CD8+ T cells are usually central memory T cells (TCM) or effector memory T cells (TEM). These two subsets of CD8+ T cells differ in function and surface markers (23). Repeated boosting drives CD8+ T cells toward the TEM subset (23). We therefore determined whether a rBCG prime followed by a rYF17D/SIVGag45-269 boost induced TCM or TEM CD8+ T cells. Staining of PBMC obtained on day 30 postvaccination revealed that the SIV-specific CD8+ T cells were largely TEM cells since the majority of them were CD28 negative (Fig. (Fig.4A).4A). Furthermore, these cells persisted with the same phenotype until day 60 after vaccination (Fig. (Fig.4B).4B). It was recently suggested that TEM cells residing in the mucosae can effectively control infection after a low-dose challenge with SIVmac239 (16).Open in a separate windowFIG. 4.rYF17D/SIVGag45-269 vaccination of animal r01056 induced effector memory Gag181-189CM9-specific CD8+ T cells that suppressed viral replication in CD4+ targets. (A and B) Frequency and memory phenotype of tetramer-positive Gag181-189-specific CD8+ T cells in animal r01056 on day 30 (A) and day 60 (B) after rYF17D/SIVGag45-269 vaccination. CD28 and CD95 expression profiles of tetramer-positive cells show a polarized effector memory phenotype. Cells were gated on CD3+ CD8+ lymphocytes. (C) Ex vivo Gag181-189CM9-specific CD8+ T cells from animal r01056 inhibit viral replication from SIVmac239-infected CD4+ T cells. Gag181-189CM9-specific CD8+ T cells from three SIV-infected Mamu-A*01-positive animals and rYF17D/SIVGag45-269-vaccinated animal r01056 were tested for their ability to suppress viral replication from SIV-infected CD4+ T cells (39). Forty-eight hours after the incubation of various ratios of SIV-infected CD4+ T cells and Gag181-189CM9-specific CD8+ T cells, the supernatant was removed and measured for viral RNA (vRNA) copies per ml by Q-PCR. We observed no suppression when effectors were incubated with CD4+ targets from Mamu-A*01-negative animals (data not shown). Animal rh2029 was infected with SIVmac239 (viral load, ∼105 vRNA copies/ml) containing mutations in 8 Mamu-B*08-restricted epitopes as part of another study (37). Animal r01080 was vaccinated with a DNA/Ad5 regimen expressing Gag, Rev, Tat, and Nef and later infected with SIVmac239 (viral load, ∼103 vRNA copies/ml) (42). Animal r95061 was vaccinated with a DNA/MVA regimen containing Gag181-189CM9 and was later challenged with SIVmac239 (undetectable viral load) (2).We then assessed whether rYF17D/SIVGag45-269-induced CD8+ T cells could recognize virally infected CD4+ T cells. We have shown that these vaccine-induced CD8+ T cells stain for tetramers and produce cytokines after stimulation with synthetic peptides (Fig. (Fig.3).3). None of these assays, however, tested whether these SIV-specific CD8+ T cells recognize SIV-infected cells and reduce viral replication. We therefore used a newly developed assay (39) to determine whether vaccine-induced CD8+ T cells can reduce viral replication in CD4+ T cells. We sorted tetramer-positive (Gag181-189CM9-specific) lymphocytes directly from fresh PBMC and incubated them for 48 h with SIVmac239-infected CD4+ T cells expressing Mamu-A*01. We assessed the percentage of CD4+ T cells that expressed SIV Gag p27 (data not shown) and the quantity of virus in the culture supernatant (Fig. (Fig.4C).4C). Vaccine-induced CD8+ T cells reduced viral replication to the same extent as that seen with Gag181-189CM9-specific CD8+ T cells purified from three SIVmac239-infected rhesus macaques, including an elite controller rhesus macaque, animal r95061 (Fig. (Fig.4C4C).The most encouraging aspect of this study is that rBCG primed a high-frequency CD8+ T-cell response after boosting with rYF17D/SIVGag45-269. These CD8+ T cells reached frequencies that were similar to those induced by an rBCG prime followed by an Ad5 boost (11). Even without the benefit of the rBCG prime, the levels of CD8+ T cells induced by a single rYF17D/SIVGag45-269 vaccination were equivalent to those induced by our best SIV vaccine, SIVmac239ΔNef. Recombinant YF17D generated an average of 195 SFCs/106 PBMC (range, 100 to 750 SFCs/106 PBMC) (n = 6), whereas SIVmac239ΔNef induced an average of 238 SFCs/106 PBMC (range, 150 to 320 SFCs/106 PBMC) (n = 3) (32). It is also possible that any YF17D/HIV recombinants would likely replicate better in humans than they have in rhesus macaques and thus induce more robust immune responses. Also, rBCG was shown previously to be effective in humans (5, 17, 33, 34) and may be more useful at priming T-cell responses in humans than it has been in our limited study with rhesus macaques. These two vectors have long-distinguished safety and efficacy histories in humans and may therefore be well suited for HIV vaccine development.  相似文献   

18.
Simian-human immunodeficiency virus (SHIV) infection in macaques provides a convenient model for testing vaccine efficacy and for understanding viral pathogenesis in AIDS. We immunized macaques with recombinant, Salmonella typhimurium (expressing Gag) or soluble Gag in adjuvant to generate T-cell-dependent lymphoproliferative or serum antibody responses. Immunized animals were challenged by intrarectal inoculation with SHIV89.6PD. Virus infection was accompanied by rapid losses of lymphoproliferative responses to Gag or phytohemagglutinin. By 8 weeks, mitogen responses recovered to near normal levels but antigen-specific immunity remained at low or undetectable levels. Serum antibody levels were elevated initially by virus exposure but soon dropped well below levels achieved by immunization. Our studies show a rapid depletion of preexisting Gag-specific CD4+ T cells that prevent or limit subsequent antiviral cellular and humoral immune responses during acute SHIV infection.  相似文献   

19.
20.
The viral protein Rev is essential for the export of the subset of unspliced and partially spliced lentiviral mRNAs and the production of structural proteins. Rev and its RNA binding site RRE can be replaced in both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) by the constitutive RNA transport element CTE of the simian type D retroviruses. We used neonatal macaques as a sensitive animal model to evaluate the pathogenicity of a pair of SIV mutant strains generated from Rev-independent molecular clones of SIVmac239 which differ only in the presence of the nef open reading frame. After high primary viremia, all animals remained persistently infected at levels below the threshold of detection. All macaques infected as neonates developed normally, and none showed any signs of immune dysfunction or disease during follow-up ranging from 2.3 to 4 years. Therefore, the Rev-RRE regulatory mechanism plays a key role in the maintenance of high levels of virus propagation, which is independent of the presence of nef. These data demonstrate that Rev regulation plays an important role in the pathogenicity of SIV. Replacement of Rev-RRE by the CTE provides a novel approach to dramatically lower the virulence of a pathogenic lentivirus. These data further suggest that antiretroviral strategies leading to even a partial block of Rev function may modulate disease progression in HIV-infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号