首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoclasts are bone‐resorbing multinucleated cells differentiated from monocyte/macrophage lineage precursors. A novel osteoclast precursor cell line, 4B12 was established from Mac‐1+c‐Fms+RANK+ cells from calvaria of 14‐day‐old mouse embryos using immunofluorescence and cell‐sorting methods. Like M‐CSF‐dependent bone marrow macrophages (M‐BMMs), M‐CSF is required for 4B12 cells to differentiate into TRAP‐positive multinucleated cells [TRAP(+) MNCs] in the presence of RANKL. Bone‐resorbing osteoclasts differentiated from 4B12 cells on dentine slices possess both a clear zone and ruffled borders and express osteoclast‐specific genes. Bone‐resorbing activity, but not TRAP, was enhanced in the presence of IL‐1α. The number of TRAP(+) MNCs and the number of pits formed from 4B12 cells on dentine slices was fourfold higher than that from M‐BMMs. 4B12 cells were identified as macrophages with Mac‐1 and F4/80, yet lost these markers upon differentiation into osteoclasts as determined by confocal laser scanning microscopy. The 4B12 cells do not have the potential to differentiate into dendritic cells indicating commitment to the osteoclast lineage. 4B12 cells are readily transfectable with siRNA transfection before and after differentiation. These data show that 4B12 cells faithfully replicate the properties of primary cells and are a useful and powerful model for analyzing the molecular and cellular regulatory mechanisms of osteoclastogenesis and osteoclast function. J. Cell. Physiol. 221: 40–53, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

2.
We previously reported that fibroblast growth factor-2 (FGF-2) acts not only on osteoblasts to stimulate osteoclastic bone resorption indirectly but also on mature osteoclasts directly. In this study, we investigated the mechanism of this direct action of FGF-2 on mature osteoclasts using mouse and rabbit osteoclast culture systems. FGF-2 stimulated pit formation resorbed by isolated rabbit osteoclasts moderately from low concentrations (>/=10(-12) m), whereas at high concentrations (>/=10(-9) m) it showed stimulation on pit formation resorbed by unfractionated bone cells very potently. FGF-2 (>/=10(-12) m) also increased cathepsin K and MMP-9 mRNA levels in mouse and rabbit osteoclasts. Among FGF receptors (FGFR1 to 4) only FGFR1 was detected on isolated mouse osteoclasts, whereas all FGFRs were identified on mouse osteoblasts. FGF-2 (>/=10(-12) m) up-regulated the phosphorylation of cellular proteins, including p42/p44 mitogen-activated protein (MAP) kinase, and increased the kinase activity of immunoprecipitated FGFR1 in mouse osteoclasts. The stimulation of FGF-2 on mouse and rabbit osteoclast functions was abrogated by PD-98059, a specific inhibitor of p42/p44 MAP kinase. These results strongly suggest that FGF-2 acts directly on mature osteoclasts through activation of FGFR1 and p42/p44 MAP kinase, causing the stimulation of bone resorption at physiological or pathological concentrations.  相似文献   

3.
4.

Background

Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown.

Methodology/Principal Findings

The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts.

Conclusions/Significance

Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis.  相似文献   

5.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

6.
7.
The osteoprotegerin (OPG)/receptor activator of nuclear factor-B ligand (RANKL)/receptor activator of nuclear factor-B (RANK) system was evaluated as a potential target of CGRP anabolic activity on bone. Primary cultures of human osteoblast-like cells (hOB) express calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1, and, because CGRP stimulates cAMP (one of the modulators of OPG production in osteoblasts), it was investigated whether it affects OPG secretion and expression in hOB. CGRP treatment of hOB (10–11 M–10–7 M) dose-dependently inhibited OPG secretion with an EC50 of 1.08 x 10–10 M, and also decreased its expression. This action was blocked by the antagonist CGRP8–37. Forskolin, a stimulator of cAMP production, and dibutyryl cAMP also reduced the production of OPG. CGRP (10–8 M) enhanced protein kinase A (PKA) activity in hOB, and hOB exposure to the PKA inhibitor, H89 (2 x 10–6 M), abolished the inhibitory effect of CGRP on OPG secretion. Conditioned media from CGRP-treated hOB increased the number of multinucleated tartrate-resistant acid phosphatase-positive cells and the secretion of cathepsin K in human peripheral blood mononuclear cells compared with the conditioned media of untreated hOB. These results show that the cAMP/PKA pathway is involved in the CGRP inhibition of OPG mRNA and protein secretion in hOB and that this effect favors osteoclastogenesis. CGRP could thus modulate the balance between osteoblast and osteoclast activity, participating in the fine tuning of all of the bone remodeling phases necessary for the subsequent anabolic effect. receptor-activity-modifying proteins; protein kinase A; osteoclast; cathepsin K  相似文献   

8.
The role of oncostatin M in bone metabolism is not clearly defined, and the actions of mouse oncostatin M (mOSM) on osteoclast development has not been previously determined. We therefore examined the ability of recombinant mOSM to stimulate osteoclast formation and activity using cocultures of murine calvaria and bone marrow cells, and compared the responses to other members of the interleukin 6 family of cytokines including mouse leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1) and IL-6. Mouse OSM, LIF and CT-1 strongly induced the formation of tartrate resistant acid phosphatase positive (TRAP(+)) multinucleated cells (MNC) in a dose-dependent fashion. OSM, LIF or CT-1 also elevated the number and size of resorptive pits when cocultures were added to smooth cortical bone slices, indicating enhancement of osteoclast activity. The activity of OSM was reduced by indomethacin (10(-8)-10(-6) M), whereas addition of dexamethasone (DEX) at 10(-7)-10(-5) M synergistically enhanced OSM-induced numbers of TRAP(+)MNC. DEX (10(-7) M) costimulation also synergistically enhanced TRAP(+)cell numbers of LIF, and CT-1 treated cocultures. IL-6 had no activity alone, but further enhanced TRAP(+)cell formation in mOSM or DEX (10(-7) M) treated cocultures. When added to mouse calvarial osteoblast cultures, mOSM induced secretion of IL-6 protein and elevation of mRNA whereas LIF or CT-1 did not. IL-6 mRNA levels and protein secretion were reduced in osteoblasts by costimulation with DEX. These results show that mouse OSM, LIF and CT-1 induce osteoclast differentiation and activation, that DEX synergizes with each in this activity, and that mouse OSM induces responses in osteoblasts that are not shown by LIF or CT-1. Collectively these data suggest an important role of these cytokines in osteoporosis caused by high levels of corticosteroid.  相似文献   

9.
Prothrombin is converted to thrombin by factor Xa in the cell-associated prothrombinase complex. Prothrombin is present in calcified bone matrix and thrombin exerts effects on osteoblasts as well as on bone resorption by osteoclasts.We investigated whether (1) osteoclasts display factor Xa-dependent prothrombinase activity and (2) osteoclasts express critical regulatory components upstream of the prothrombinase complex.The osteoclast differentiation factor RANKL induced formation of multinucleated TRAP positive cells concomitant with induction of prothrombinase activity in cultures of RAW 264.7 cells and bone marrow osteoclast progenitors.Expression analysis of extrinsic coagulation factors revealed that RANKL enhanced protein levels of factor Xa as well as of coagulation factor III (tissue factor). Inhibition assays indicated that factor Xa and tissue factor were involved in the control of prothrombinase activity in RANKL-differentiated osteoclasts, presumably at two stages (1) conversion of prothrombin to thrombin and (2) conversion of factor X to factor Xa, respectively.Activation of the extrinsic coagulation pathway during osteoclast differentiation through induction of tissue factor and factor Xa by a RANKL-dependent pathway indicates a novel role for osteoclasts in converting prothrombin to thrombin.  相似文献   

10.
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action.Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK−/− mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163.The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.  相似文献   

11.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

13.
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF‐κB ligand (RANKL) to enhance in vitro differentiation of osteoclast‐like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow‐derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p‐SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p‐SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL‐stimulated formation of multinuclear TRAP‐positive cells. The BMP antagonist noggin inhibited RANKL‐mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts‐like cells. J. Cell. Biochem. 109: 672–682, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Osteoclast-mediated bone resorption is accomplished by secretion of lysosomal proteases into an acidic extracellular compartment. We have previously demonstrated that avian osteoclasts and human osteoclast-like giant cell tumor cells respond in vitro to treatment with 17β-estradiol (17β-E2) by decreased bone resorption activity. To better understand the mechanism by which this is accomplished, we have investigated the effects of 17β-E2 treatment on lysosomal enzyme production and secretion by isolated avian osteoclasts and multinucleated cells from human giant cell tumors in vitro. Isolated cells were cultured with bone particles in the presence of either vehicle or steroid. The conditioned media and cells were harvested, and the levels of cathepsin B, cathepsin L, β-glucuronidase, lysozyme, and tartrate-resistant acid phosphatase (TRAP) activities were determined. There was a steroid dose-dependent decrease in secreted levels of these enzymes. Cell-associated levels of cathepsin L, β-glucuronidase, and lysozyme decreased, whereas cell-associated levels of cathepsin B and TRAP increased. These changes were measurable at 10?10 M and maximal at 10?8 M 17β-E2. The changes were detectable at 4–18 h of treatment and increased through 24 h of treatment. The response was steroid specific, since the inactive estrogen isomer, 17β-E2, failed to alter the activity levels. Moreover, the effects of 17β-E2 were blocked when the cells were treated simultaneously with the estrogen antagonist ICI182–780 in conjunction with 17β-E2. Human osteoclast-like cells obtained from giant cell tumors of bone responded similarly to estrogen with respect to cathepsin B, cathepsin L, and TRAP activities. However, secretion of β-glucuronidase and lysozyme were not altered by treatment with 10?8 M 17β-E2. These data indicate that estrogen effects on osteoclast resorption activity may be mediated by decreasing the secretion of cathepsin B, cathepsin L, and TRAP.  相似文献   

15.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

16.
17.
18.
Huang J  Yuan L  Wang X  Zhang TL  Wang K 《Life sciences》2007,81(10):832-840
Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.  相似文献   

19.
Using our original in vitro assay system with goldfish scales, we examined the direct effect of prostaglandin E? (PGE?) on osteoclasts and osteoblasts in teleosts. In this assay system, we measured the activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) as respective indicators of each activity in osteoblasts and osteoclasts. ALP activity in scales significantly increased following treatment at high concentration of PGE?(10?? and 10?? M) over 6 hrs of incubation. At 18 hrs of incubation, ALP activity also significantly increased in the PGE? (10?? to 10?? M)-treated scale. In the case of osteoclasts, TRAP activity tended to increase at 6 hrs of incubation, and then significantly increased at 18 hrs of incubation by PGE? (10(-7) to 10?? M) treatment. At 18 hrs of incubation, the mRNA expression of osteoclastic markers (TRAP and cathepsin K) and receptor activator of the NF-κB ligand (RANKL), an activating factor of osteoclasts expressed in osteoblasts, increased in PGE? treated-scales. Thus, PGE? acts on osteoblasts, and then increases the osteoclastic activity in the scales of goldfish as it does in the bone of mammals. In an in vivo experiment, plasma calcium levels and scale TRAP and ALP activities in the PGE?-injencted goldfish increased significantly. We conclude that, in teleosts, PGE? activates both osteoblasts and osteoclasts and participates in calcium metabolism.  相似文献   

20.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号