首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a novel three‐dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high‐throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox‐1, whose levels were also measured in situ using a GFP reporter system. In addition, the high‐throughput capacity of the platform was tested using a dual‐slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor‐4 (FGF‐4) on the pluripotency of mouse ES cells. This high‐throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
3.
Myc proteins are known to have an important function in stem cell maintenance. As Myc has been shown earlier to regulate microRNAs (miRNAs) involved in proliferation, we sought to determine whether c‐Myc also affects embryonic stem (ES) cell maintenance and differentiation through miRNAs. Using a quantitative primer‐extension PCR assay we identified miRNAs, including, miR‐141, miR‐200, and miR‐429 whose expression is regulated by c‐Myc in ES cells, but not in the differentiated and tumourigenic derivatives of ES cells. Chromatin immunoprecipitation analyses indicate that in ES cells c‐Myc binds proximal to genomic regions encoding the induced miRNAs. We used expression profiling and seed homology to identify genes specifically downregulated both by these miRNAs and by c‐Myc. We further show that the introduction of c‐Myc‐induced miRNAs into murine ES cells significantly attenuates the downregulation of pluripotency markers on induction of differentiation after withdrawal of the ES cell maintenance factor LIF. In contrast, knockdown of the endogenous miRNAs accelerate differentiation. Our data show that in ES cells c‐Myc acts, in part, through a subset of miRNAs to attenuate differentiation.  相似文献   

4.
5.
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK‐responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK‐depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.  相似文献   

8.
9.
Many of the extracellular proteins or extracellular domains of plasma membrane proteins exist or function as homo‐ or heteromeric multimer protein complexes. Successful recombinant production of such proteins is often achieved by co‐expression of the components using eukaryotic cells via the secretory pathway. Here we report a strategy addressing large‐scale expression of hetero‐multimeric extracellular domains of plasma membrane proteins and its application to the extracellular domains of a taste receptor. The target receptor consists of a heterodimer of T1r2 and T1r3 proteins, and their extracellular ligand binding domains (LBDs) are responsible for the perception of major taste substances. However, despite the functional importance, recombinant production of the heterodimeric proteins has so far been unsuccessful. We achieved the successful preparation of the heterodimeric LBD by use of Drosophila S2 cells, which have a high secretory capacity, and by the establishment of a stable high‐expression clone producing both subunits at a comparable level. The method overcame the problems encountered in the conventional transient expression of the receptor protein in insect cells using baculovirus or vector lipofection, which failed in the proper heterodimer production because of the biased expression of T1r3LBD over T1r2LBD. The large‐scale expression methodology reported here may serve as one of the considerable strategies for the preparation of multimeric extracellular protein complexes.  相似文献   

10.
A cohort of genes associated with embryonic stem (ES) cell behaviour, including NANOG, are expressed in a number of human cancers. They form an ES‐like signature we first described in glioblastoma multiforme (GBM), a highly invasive and incurable brain tumour. We have also shown that HEDGEHOG‐GLI (HH‐GLI) signalling is required for GBM growth, stem cell expansion and the expression of this (ES)‐like stemness signature. Here, we address the function of NANOG in human GBMs and its relationship with HH‐GLI activity. We find that NANOG modulates gliomasphere clonogenicity, CD133+ stem cell cell behavior and proliferation, and is regulated by HH‐GLI signalling. However, GLI1 also requires NANOG activity forming a positive loop, which is negatively controlled by p53 and vice versa. NANOG is essential for GBM tumourigenicity in orthotopic xenografts and it is epistatic to HH‐GLI activity. Our data establish NANOG as a novel HH‐GLI mediator essential for GBMs. We propose that this function is conserved and that tumour growth and stem cell behaviour rely on the status of a functional GLI1‐NANOG‐p53 network.  相似文献   

11.
The efficient and reversible control of transgene expression is a powerful tool for the correct manipulation of embryonic stem cells in both cell therapy and transgenesis. The aim of this work was to investigate the possibilities of recently developed reverse tetracycline-controlled transactivator rtTA2s-S2. We show that the rtTA2s-S2 is useful for transient inducible expression of genes in embryonic stem cells. However, we found that it was not possible to establish mouse embryonic stem cell lines stably expressing this transactivator. Using the viral IRES sequence which couples the expression of rtTA2s-S2 and neomycin phosphotransferase, we found that embryonic stem cells expressing rtTA2s-S2 are not capable of growing in the presence of G418. Our results indicate that this transactivator is toxic to ES cells and raise the need for the development of other strategies for stable and inducible expression of genes in ES cells.  相似文献   

12.
Tissues are composed of multiple cell types in a well‐organized three‐dimensional (3D) microenvironment. To faithfully mimic the tissue in vivo, tissue‐engineered constructs should have well‐defined 3D chemical and spatial control over cell behavior to recapitulate developmental processes in tissue‐ and organ‐specific differentiation and morphogenesis. It is a challenge to build a 3D complex from two‐dimensional (2D) patterned structures with the presence of cells. In this study, embryonic stem (ES) cells grown on polymeric scaffolds with well‐defined microstructure were constructed into a multilayer cell‐scaffold complex using low pressure carbon dioxide (CO2) and nitrogen (N2). The mouse ES cells in the assembled constructs were viable, retained the ES cell‐specific gene expression of Oct‐4, and maintained the formation of embryoid bodies (EBs). In particular, cell viability was increased from 80% to 90% when CO2 was replaced with N2. The compressed gas‐assisted bioassembly of stem cell‐polymer constructs opens up a new avenue for tissue engineering and cell therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
The expression of transfected genes in mammalian cells is rapidly repressed by epigenetic mechanisms such that, within a matter of weeks, only a fraction of the cells in most clonal populations still exhibit detectable expression. This problem can become prohibitive when one wants to express two ectopically introduced genes, as is necessary to establish cell lines that harbor genes regulated by the tetracycline‐controlled transactivators. We describe an approach to establish Chinese hamster ovary (CHO) cell lines that stably induce a tet‐responsive reporter gene in all cells of a transfected clonal population. Screening of more than 100 colonies resulting from a standard co‐transfection of the tetracycline transactivator (tTA) with a green fluorescent protein (GFP) reporter plasmid failed to identify a single colony that could induce GFP in more than 20% of cells. The presence of chromatin insulator sequences, previously shown to protect some transfected genes from epigenetic silencing, moderately improved stability but was not sufficient to produce homogeneous transformants. However, when cell lines were first established in which selection could be maintained either for the expression of tTA activity (co‐transfection with a tTA‐responsive selectable marker) or the presence of tTA mRNA (bicistronic message encoding a selectable marker), these cell lines could be subsequently transfected with the GFP reporter construct, and nearly 10% of the resulting colonies exhibited stable homogeneous tet‐responsive GFP expression in 100% of the expanded clonal cell population. J. Cell. Biochem. 76:280–289, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
15.
ES (embryonic stem)‐derived cells have been investigated in many animal models of severe injury and degenerative disease. However, few studies have examined the ability of ES‐derived cells to improve functional outcome following partially damaged breast and also the modification of mammary tissue to produce costly proteins. This study investigates the feasibility of implanting mES‐dK (mouse ES‐derived keratinocytes‐like) cells stably transfected with a mammary gland special expression vector for the PBD‐1 (porcine beta‐defensin 1) in developing mammary glands. Our aim was to assess the ability of cell grafting to improve functional outcome following partial damage of the breast, also on the breast modification mammary tissue in mice for the production of PBD‐1 protein secreted in the milk. Our results showed that the ratios of the surviving cells labelled with the myoepithelial or luminal cell markers, EMA (epithelial membrane antigen) and CALLA, were 41.7±15.2% and 28.4±9.6%, respectively, which revealed that transplanted mES‐dK cells survived, integrated in vivo and differentiated into myoepithelial or luminal cells. In addition, Western blot analysis showed that 37.5% (3 out of 8) female transplanted mice had PBD‐1 expression in their milk and reached 0.4998, 0.5229 and 0.5195 μg/ml, respectively.  相似文献   

16.
17.
Stem cells have the ability for prolonged self‐renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell properties. Physiological condition including oxygen tension is an important component of the stem cell microenvironment and has been shown to play a role in regulating both embryonic and adult stem cells. This review focuses on oxygen as a signaling molecule and the way it regulates the stem cells' development into mesenchymal tissues in vitro. The physiological relevance of low oxygen tension as an environmental parameter that uniquely benefits stem cells' expansion and maintenance is described along with recent findings on the regulatory effects of oxygen on embryonic stem cells and adult mesenchymal stem cells. The relevance to tissue engineering is discussed in the context of the need to specifically regulate the oxygen content in the cellular microenvironment in order to optimize in vitro tissue development. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The development of efficient and reproducible culture systems for embryonic stem (ES) cells is an essential pre‐requisite for regenerative medicine. Culture scale‐up ensuring maintenance of cell pluripotency is a central issue, because large amounts of pluripotent cells must be generated to warrant that differentiated cells deriving thereof are transplanted in great amounts and survive the procedure. This study aimed to develop a robust scalable cell expansion system, using a murine embryonic stem cell line that is feeder‐dependent and adapted to serum‐free medium, thus representing a more realistic model for human ES cells. We showed that high concentrations of murine ES cells can be obtained in stirred microcarrier‐based spinner cultures, with a 10‐fold concentration of cells per volume of medium and a 5‐fold greater cell concentration per surface area, as compared to static cultures. No differences in terms of pluripotency and differentiation capability were observed between cells grown in traditional static systems and cells that were replated onto the traditional system after being expanded on microcarriers in the stirred system. This was verified by morphological analyses, quantification of cells expressing important pluripotency markers (Oct‐4, SSEA‐1, and SOX2), karyotype profile, and the ability to form embryoid bodies with similar sizes, and maintaining their intrinsic ability to differentiate into all three germ layers. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
20.
Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale‐up of stem cell culture is necessary. Bioreactors for dynamic three‐dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow‐fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 106 mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 106 mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four‐compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:141–151, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号