首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Indoleamine 2,3‐dioxygenase (IDO) converts tryptophan to l ‐kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, to investigate the effects of IDO in carbon tetrachloride (CCl4)–induced hepatitis model, the levels of IDO enzymic activities in the mock group, the control group and the 1‐methyl‐d ‐tryptophan (1‐MT)–treated group were confirmed by determination of l ‐kynurenine concentrations. Serum alanine aminotransferase levels in 1‐MT‐treated rats after CCl4 injection significantly increased compared with those in mock and control groups. In CCl4‐induced hepatitis models, tumour necrosis factor‐α (TNF‐α) is critical in the development of liver injury. The mRNA expression and secretion levels of TNF‐α in the liver from 1‐MT‐treated rats were more enhanced compared with those in the mock and the control groups. Moreover, the levels of cytokine and chemokine from mock, control group and 1‐MT‐treated rats after treated with CCl4 were analyzed by ELISA, and the level of interleukin‐6 was found to increase in 1‐MT‐treated rats. It was concluded that the deficiency of IDO exacerbated liver injury in CCl4‐induced hepatitis and its effect may be connected with TNF‐α and interleukin‐6. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Global increases in small ubiquitin‐like modifier (SUMO)‐2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO‐2/3‐specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3‐mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1‐mediated cytochrome c release and caspase‐mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation‐induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.  相似文献   

4.
The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L ‐Trp, but not D ‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L /D ‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

6.
In mice, immunoregulatory APCs express the dendritic cell (DC) marker CD11c, and one or more distinctive markers (CD8alpha, B220, DX5). In this study, we show that expression of the tryptophan-degrading enzyme indoleamine 2,3 dioxygenase (IDO) is selectively induced in specific splenic DC subsets when mice were exposed to the synthetic immunomodulatory reagent CTLA4-Ig. CTLA4-Ig did not induce IDO expression in macrophages or lymphoid cells. Induction of IDO completely blocked clonal expansion of T cells from TCR transgenic mice following adoptive transfer, whereas CTLA4-Ig treatment did not block T cell clonal expansion in IDO-deficient recipients. Thus, IDO expression is an inducible feature of specific subsets of DCs, and provides a potential mechanistic explanation for their T cell regulatory properties.  相似文献   

7.
K63‐ and Met1‐linked ubiquitylation are crucial posttranslational modifications for TNF receptor signaling. These non‐degradative ubiquitylations are counteracted by deubiquitinases (DUBs), such as the enzyme CYLD, resulting in an appropriate signal strength, but the regulation of this process remains incompletely understood. Here, we describe an interaction partner of CYLD, SPATA2, which we identified by a mass spectrometry screen. We find that SPATA2 interacts via its PUB domain with CYLD, while a PUB interaction motif (PIM) of SPATA2 interacts with the PUB domain of the LUBAC component HOIP. SPATA2 is required for the recruitment of CYLD to the TNF receptor signaling complex upon TNFR stimulation. Moreover, SPATA2 acts as an allosteric activator for the K63‐ and M1‐deubiquitinase activity of CYLD. In consequence, SPATA2 substantially attenuates TNF‐induced NF‐κB and MAPK signaling. Conversely, SPATA2 is required for TNF‐induced complex II formation, caspase activation, and apoptosis. Thus, this study identifies SPATA2 as an important factor in the TNF signaling pathway with a substantial role for the effects mediated by the cytokine.  相似文献   

8.
Securin and γ‐H2AX have been shown to regulate cell survival and genomic stability. However, it is still unknown how the expression and regulation of these proteins is altered following treatment with baicalein, a natural flavonoid extracted from the Scutellaria baicalensis root. In the present study, we investigate the possible roles of securin and γ‐H2AX in baicalein‐induced cancer cell death. Baicalein reduced cell viability in a variety of human cancer cell lines, including bladder, cervical, colon, and lung cancer cells. Interestingly, baicalein treatment (40–80 µM for 24 h) markedly inhibited securin expression, while the levels of γ‐H2AX were elevated. Abnormal spindle formation and chromosomal segregation were induced by baicalein. Furthermore, wild type HCT116 cancer cells had a higher incidence of cytotoxicity and apoptosis than securin‐null HCT116 cells following treatment with baicalein. In contrast, baicalein increased the levels of γ‐H2AX to a similar extent in both cell types. Transfection with H2AX siRNA further increased baicalein‐induced cell death. Additionally, blockade of the AKT pathway by treatment with wortmannin or AKT shRNA lowered the levels of γ‐H2AX and enhanced cytotoxicity in baicalein‐treated cells. Taken together, our findings suggest that the opposing effects of baicalein on securin and γ‐H2AX levels may be involved in the regulation of cell viability and genomic stability by this compound. J. Cell. Biochem. 111: 274–283, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The goal of this study was explore the role of indoleamine 2, 3‐dioxygenase (IDO) in the therapeutic effect of probiotics on inflammatory bowel disease (IBD). Trinitrobenzene sulfonic acid (TNBS) was used to induce colitis in mice and 1‐methyltryptophan (1‐MT) to block expression of IDO. Clinical manifestations and macroscopic and microscopic colonic changes were assessed using a disease activity index (DAI), the Wallace–Keenan, and Curtner scoring systems, respectively. Expression of colonic IDO was detected by western blot. Immunohistochemistry analysis to evaluate numbers of CD11c+ cells and expression of IL‐17 and Foxp3 showed that DAI, Wallace–Keenan, and Curtner scores were lower in the Bifidobacteria treatment group than the control group and that the therapeutic effect of Bifidobacteria was blocked by 1‐MT (P < 0.05). Additionally, Bifidobacteria were found to increase expression of IDO and the numbers of CD11c+ cells, CD11c+ and IDO double positive cells and Foxp3+ Treg cells, while decreasing the number of IL‐17+cells (P < 0.05). The generation of Foxp3+ Treg cells induced by Bifidobacteria was abrogated by 1‐MT (P < 0.05). These findings study suggest that Bifidobacteria attenuate TNBS‐induced colitis by inducing expression of IDO, which further increases generation of Foxp3+ Treg cells.
  相似文献   

10.
Complement 1q-Binding Protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration, and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation, and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP, and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels, and decreased cell migration compared to control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than anti-tumor, role for C1qbp, and indicate that C1qbp could serve as a molecular target for cancer therapeutics.  相似文献   

11.
Complement 1q-binding protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels and decreased cell migration compared with control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than antitumor, role for C1qbp and indicate that C1qbp could serve as a molecular target for cancer therapeutics.Key words: mitochondria, cell proliferation, cell migration, cell death, tumor cells  相似文献   

12.
The enzyme indoleamine 2,3‐dioxygenase 1 (IDO1) catalyses the initial, rate‐limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1‐dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine‐based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP‐1 and SHP‐2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine‐phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half‐life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM‐associated tyrosines with phospho‐mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 – but not ITIM2 mutant – did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen‐specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1‐dependent events will occur in a local microenvironment.  相似文献   

13.
Inflammasomes are important innate immune components in mammals. However, the bacterial factors modulating inflammasome activation in fish, and the mechanisms by which they alter fish immune defences, remain to be investigated. In this work, a mutant of the fish pathogen Edwardsiella piscicida (E. piscicida), called 0909I, was shown to overexpress haemolysin, which could induce a robust pyroptotic‐like cell death dependent on caspase‐5‐like activity during infection in fish nonphagocyte cells. E. piscicida haemolysin was found to mainly associate with bacterial outer membrane vesicles (OMVs), which were internalised into the fish cells via a dynamin‐dependent endocytosis and induced pyroptotic‐like cell death. Importantly, bacterial immersion infection of both larvae and adult zebrafish suggested that dysregulated expression of haemolysin alerts the innate immune system and induces intestinal inflammation to restrict bacterial colonisation in vivo. Taken together, these results suggest a critical role of zebrafish innate immunity in monitoring invaded pathogens via detecting the bacterial haemolysin‐associated OMVs and initiating pyroptotic‐like cell death. These new additions to the understanding of haemolysin‐mediated pathogenesis in vivo provide evidence for the existence of noncanonical inflammasome signalling in lower vertebrates.  相似文献   

14.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


15.
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca2+‐activity ([Ca2+]i) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib‐2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine‐exposure at the cell surface from annexin‐V‐binding, cell volume from forward scatter, [Ca2+]i from Fluo3‐fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib‐2 significantly increased the percentage of annexin‐V‐binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib‐2 significantly increased Fluo3‐fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib‐2 on annexin‐V‐binding was not significantly blunted by removal of extracellular Ca2+. Ceranib‐2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca2+ entry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
High glucose (HG)‐induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co‐transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG‐induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence‐associated beta‐galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT‐PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2‐NBD‐glucose. HG increased ECs senescence markers and oxidative stress, down‐regulated eNOS expression and NO formation, and induced the expression of VCAM‐1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX‐4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG‐induced ECs senescence and SGLT1 and 2 expression. Thus, HG‐induced ECs ageing is driven by the local angiotensin system via the redox‐sensitive up‐regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.  相似文献   

17.
The article to which this erratum refers was published in J. Cell. Biochem. 104: 1937–1945, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
19.
The E3 ubiquitin ligase Parkin plays a central role in the pathogenesis of many neurodegenerative diseases. Parkin promotes specific ubiquitination and affects the localization of transactivation response DNA‐binding protein 43 (TDP‐43), which controls the translation of thousands of mRNAs. Here we tested the effects of lentiviral Parkin and TDP‐43 expression on amino acid metabolism in the rat motor cortex using high frequency 13C NMR spectroscopy. TDP‐43 expression increased glutamate levels, decreased the levels of other amino acids, including glutamine, aspartate, leucine and isoleucine, and impaired mitochondrial tricarboxylic acid cycle. TDP‐43 induced lactate accumulation and altered the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters. Parkin restored amino acid levels, neurotransmitter balance and tricarboxylic acid cycle metabolism, rescuing neurons from TDP‐43‐induced apoptotic death. Furthermore, TDP‐43 expression led to an increase in 4E‐BP levels, perhaps altering translational control and deregulating amino acid synthesis; while Parkin reversed the effects of TDP‐43 on the 4E‐BP signaling pathway. Taken together, these data suggest that Parkin may affect TDP‐43 localization and mitigate its effects on 4E‐BP signaling and loss of amino acid homeostasis.

  相似文献   


20.
The prion protein peptide PrP106‐126 induces cell apoptosis through mechanisms involving production of intracellular reactive oxygen species. The present study investigated the effects of edaravone, a potent free radical scavenger in clinical use, on cell cytotoxicity induced by PrP106‐126. Results showed that PrP106‐126 decreased PC12 cell viability in a dose‐ and time‐dependent manner. Edaravone significantly antagonized the cytotoxic effects of PrP106‐126. Mechanistically, PrP106‐126 decreased PC 12 intracellular glutathione (GSH) concentrations, decreased superoxide dismutase (SOD) enzyme activity, increased concentrations of the oxidation end product malondialdehyde (MDA), depolarized the mitochondrial membrane, and increased caspase‐3 activity. Edaravone alone did not affect GSH, SOD, or MDA but did effectively reverse all of the intracellular prooxidant effects induced by PrP106‐126 and inhibit induced apoptosis in PC12 cells. In conclusion, edaravone may be a viable candidate for the treatment of oxidative stress‐induced neurodegenerative disease. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:235–241, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20330  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号