首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基因敲除小鼠技术的建立和发展使得人们为研究基因的功能和寻找新的治疗人类疾病的靶点提供了强有力的支持。基因打靶和基因捕获是两种通过胚胎干细胞(Embryonicstemcell,ESC)构建基因敲除小鼠的技术。基因打靶通过同源重组替换内源基因从而敲除目的基因,而基因捕获则有启动子捕获和polyA捕获两种方法对目的基因进行敲除。近年来,有许多新的基因敲除技术不断被开发出来,包括Cre/loxP系统、CRISP/Cas9系统以及最新的ZFN技术和TAILEN技术,都有望取代传统基因敲除手段。文中简要阐述了如今新出现的几种基因敲除小鼠技术。  相似文献   

2.
3.
Gene trapping is a high-throughput insertional mutagenesis approach that has been primarily used in mouse embryonic stem cells (ESCs). As a high throughput technology, gene trapping helped to generate tenth of thousands of ESC lines harboring mutations in single genes that can be used for making knock-out mice. Ongoing international efforts operating under the umbrella of the International Knockout Mouse Consortium (IKMC; www.knockoutmouse.org) aim to generate conditional alleles for every protein coding gene in the mouse genome by high throughput conditional gene targeting and trapping. Here, we provide protocols for gene trapping in ESCs that can be easily adapted to any other mammalian cell. We further provide protocols for handling and verifying conditional gene trap alleles in ESC lines obtained from the IKMC repositories and describe a highly efficient method for the postinsertional modification of gene trap alleles. More specifically, we describe a protein tagging strategy based on recombinase mediated cassette exchange (RMCE) that enables protein localization and protein-protein interaction studies under physiological conditions.  相似文献   

4.
Gene trapping in embryonic stem (ES) cells is a proven method for large‐scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox‐mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [ http://egtc.jp ]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene‐trap mouse lines. Because we used a promoter‐trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.  相似文献   

5.
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.  相似文献   

6.
7.
ES细胞是建立基因打靶突变小鼠的必要条件 ,也可用于制备转基因动物 .基因敲除、精细突变和条件性基因打靶技术建立的基因打靶突变小鼠在人类遗传病机理研究、基因治疗和基因功能研究方面都有着重要作用 .  相似文献   

8.
BAI1(脑血管生成抑制因子1)因其具有抑制血管生成的作用而得名,研究表明肿瘤的发生可能与BAI1的低表达有关.为了进一步探索BAI1的作用机制,运用改良的Red重组系统和低拷贝中间载体,利用50 bp的同源重组序列直接从BAC载体中克隆长片段的小鼠基因组序列;将得到的基因组序列再次通过重组和改造,构建了BAI1基因的完全敲除并带有报告基因的打靶载体,为后续的构建BAI1基因敲除小鼠模型、在动物体内研究基因功能奠定了基础.  相似文献   

9.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   

10.
11.
基因编辑(gene editing)技术可以对目的基因进行定点插入、敲除和置换。基于CRISPR-Cas9的基因编辑技术是继锌指核酸酶和转录激活样效应物核酸酶之后的第3代基因编辑技术。近年来,CRISPR-Cas9系统作为研究的热点被广泛应用于医学、药学、植物学、动物学和微生物学等领域,但其在植物次生代谢物领域的应用还处于探索时期。阐述了基于CRISPR-Cas9基因编辑技术的发展历程、工作原理和几种常用的基因编辑方法及其应用实例,总结了CRISPR-Cas9技术在对植物次生代谢产物研究方面的应用。利用CRISPR-Cas9系统可对植物基因组进行定点敲除、突变和插入,以达到提高植物次生代谢物含量、改良作物品质和提高植物抗性等目的。该技术已在植物次生代谢物生物合成关键酶基因的编辑等方面显示出越来越重要的作用。  相似文献   

12.
Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene.  相似文献   

13.
随着分子生物学技术的发展,基因敲除技术越来越广泛地应用于动植物、微生物领域,成为研究生物基因功能最有力的工具之一。基因敲除技术在改造动植物、微生物基因组、研究发育生物学、鉴定新基因新功能、育种以及医疗领域都有应用价值。针对微生物方面,对实现基因敲除的各种原理方法,RecA系统同源重组法, Red系统同源重组法,基于自杀载体的同源重组法,基于温敏型质粒的同源重组法, CRISPR/Cas系统介导的基因敲除方法进行了总结,比较各自的优缺点,并提供一些成功案例以及各种方法相关的发明专利,以期对了解基因敲除技术的方法与发展提供参考。  相似文献   

14.
Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.  相似文献   

15.
16.
基因打靶是近几年发展起来的一种通过同源重组定点改变小鼠基因组特定位点的技术,其诞生是分子生物学与实验胚胎学方法相结合的产物,它的出现又导致了体内研究与体外研究、分子生物学与临床病理学的有机结合,为研究基因的体内功能和疾病的致病机理提供了一种有力的实验手段。本文以基因打靶的实验过程为主线,介绍该技术的原理、操作、进展和应用。  相似文献   

17.
With fewer than 8000 genes and a minimalist cellular organization, the green picoalga Ostreococcus tauri is one of the simplest photosynthetic eukaryotes. Ostreococcus tauri contains many plant‐specific genes but exhibits a very low gene redundancy. The haploid genome is extremely dense with few repeated sequences and rare transposons. Thanks to the implementation of genetic transformation and vectors for inducible overexpression/knockdown this picoeukaryotic alga has emerged in recent years as a model organism for functional genomics analyses and systems biology. Here we report the development of an efficient gene targeting technique which we use to knock out the nitrate reductase and ferritin genes and to knock in a luciferase reporter in frame to the ferritin native protein. Furthermore, we show that the frequency of insertion by homologous recombination is greatly enhanced when the transgene is designed to replace an existing genomic insertion. We propose that a natural mechanism based on homologous recombination may operate to remove inserted DNA sequences from the genome.  相似文献   

18.
A mouse for all reasons   总被引:3,自引:0,他引:3  
Three major mouse knockout programs are underway worldwide, working together to mutate all protein-encoding genes in the mouse using a combination of gene trapping and gene targeting in mouse embryonic stem (ES) cells. Although the current emphasis is on production of this valuable resource, there are significant efforts to facilitate program coordination, to enhance the availability of this resource, and to plan for future efforts in mouse genetics research.  相似文献   

19.
Gene targeting is commonly used to knock out genes in order to understand their function. It has also been used successfully to model the relatively rare human genetic diseases that are caused by homozygous loss of gene function. Modelling the much more common multifactorial diseases that have strong genetic and environmental causes is less easy. Here, I describe my personal voyage into this challenging field, using gene targeting to alter the expression of genes that impact on hypertension and diabetes.  相似文献   

20.
Recently, a codon improved version of the Flpe site specific recombinase, termed Flpo, was reported as having greatly improved performance in mammalian cell applications. However, the degree of improvement could not be estimated because essentially no Flpe activity was observed. Here, we compare Flpe and Flpo accurately in a mammalian cell assay to estimate that Flpo is about five times more active than Flpe and similar to Cre and Dre. Consequently, we generated a Flpo deleter mouse line from the JM8 C57Bl/6 ES cells used in the EUCOMM and KOMP systematic knock‐out programs. In breeding experiments, we show that the Flpo deleter delivers complete recombination using alleles that are incompletely recombined by a commonly used Flpe deleter. This indicates that the Flpo deleter is more efficient. genesis 48:512–520, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号