首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II) has been purified from caprine epididymal plasma (EP) by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 µg/ml (12.5 nM) level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility.  相似文献   

2.
Lactoferrin has been for the first time purified from the porcine cauda epididymal fluid as a 70 kDa protein. Both Western and Northern blot analyses show that lactoferrin is synthesized in the regions from the distal caput to the cauda epididymis and secreted into the luminal fluid. Lactoferrin is first secreted as a 75 kDa glycoprotein and its carbohydrate moieties are gradually digested to form 70 kDa protein in the cauda epididymis. Lactoferrin has already bound to the surface of the epididymal sperm because the anti-lactoferrin antiserum induces the mature sperm tail-to-tail agglutination. These results strongly suggest new physiological functions of lactoferrin on the sperm maturation in the epididymis. Mol. Reprod. Dev. 47:490–496, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Glycosylation is one of the important post-translational modifications of sperm plasma membrane proteins during the maturation of epididymal spermatozoa that results in the development of motility and fertilizing capability. The aim of the present study was to identify and characterize the maturation-dependent asparagine-linked (N-linked) and serine- and threonine-linked (O-linked) glycoproteins of the epididymal spermatozoa of rhesus monkeys. The presence of N- and O-linked glycoproteins was confirmed by treatment of sperm membranes with N-glycosidase F and O-glycosidase. The major maturation-dependent sperm membrane glycoproteins identified on blots of SDS-PAGE-fractionated proteins of purified sperm plasma membranes from five segments of epididymis, probed with biotinylated lectins and Vectastain-ABC reagent included O-linked 170, 150, 86 and 60/58 kDa glycoproteins; N-linked 68, 56, 48 and 38 kDa glycoproteins and N- and O-linked 116 kDa glycoprotein, all of which exhibited marked differences in the degree of glycosylation between immature and mature sperm surfaces. These glycoproteins can be used as markers of sperm maturation in the epididymis of rhesus monkeys, during the screening of antifertility agents acting at the epididymis, or may be developed as potential sperm antigens. The 100% inhibition of fertility in female rats and rabbits immunized with major maturation-dependent 116 kDa glycoprotein showed the significance of glycosylation changes in the maturation status of epididymal spermatozoa. This 116 kDa protein can be used as a marker parameter of sperm maturation in the rhesus monkey, which is often the preferred animal model for preclinical studies. These results will contribute to the identification of an appropriate animal model for the development of male contraceptives in humans.  相似文献   

4.
The present report identifies epididymal boar anti-agglutinin and examines its effect on sperm motility. Boar spermatozoa from the cauda epididymidis were washed and incubated in modified Krebs–Ringer bicarbonate at 37°C (5% CO2 in air). In the samples washed three or five times and then incubated for 3–5 h, higher rates (72–79%) of spermatozoa were associated with one another at the acrosomal region, mainly in groups of 2–5 cells (head-to-head agglutination), and many cells exhibited intensively flagellant and/or circular types of movement but rarely progressive motility. The addition of epididymal plasma or 25 kDa protein purified from it markedly inhibited the occurrence of head-to-head agglutination in washed spermatozoa, whereas heat treatment and subsequent removal of insoluble materials reduced the anti-agglutination activity of epididymal plasma. The percentages of progressively motile cells in the samples incubated with epididymal plasma or 25 kDa epididymal protein rose coincident with the reduction of sperm agglutination. These findings demonstrate that the 25 kDa epididymal protein is an anti-agglutinin for the cauda spermatozoa and that it effectively functions to maintain progressive motility of the cells in vitro. © 1994 Wiley-Liss, Inc.  相似文献   

5.
A previous study has characterized the major 47 kDa anti-sticking factor (ASF-I) from goat cauda-epididymal plasma (Roy, N., and Majumder, G.C., Biochim. Biophys. Acta, 991:114-122, 1989). This study reports the purification and characterization of ASF-II, another anti-sticking factor from the goat epididymal plasma. ASF-II was purified to apparent homogeneity by using concanavalin A-agarose affinity chromatography, DEAE-cellulose chromatography, alumina gel adsorption, and isoelectric focussing techniques. It showed a single protein band by both non-denaturing and SDS-polyacrylamide gel electrophoresis. ASF-II showed a molecular weight of 36,000 and a sedimentation constant of 2.4S. ASF-II is largely stable to heat treatment and it is a specific glycoprotein having high affinity and specificity for its anti-sticking action. At saturating concentration (1 nM) it inhibited adhesion of nearly 50% of spermatozoa to the glass surface of the haemocytometer counting chamber. Both the protein and sugar parts of the factor are essential for the anti-sticking activity since it lost its activity completely when treated with trypsin, L-fucosidase, or mannosidase. ASF-II does not coat the glass surface and it binds to spermatozoa. Data are consistent with the view that ASF-II has not been derived from the larger ASF-I molecule due to its enzymic modifications. Both ASF-I and -II had no effect on sperm forward motility as evidenced by spectrophotometric motility assays, indicating thereby the suitability of the factors to improve the existing sperm motility assays by eliminating the possibility of cell-sticking artifacts.  相似文献   

6.
Spermiogenesis and posttesticular sperm maturation in the epididymis are distinct developmental processes that result in a polarized spermatozoon possessing a plasma membrane partitioned into segment-specific domains of distinct composition and function. The mechanisms that specify the distribution of intracellular organelles and target proteins to restricted membrane domains are not well understood. In this study we examined the expression pattern and distribution of protein farnesyltransferase (FTase) in hamster spermatids and epididymal spermatozoa to determine if protein lipidation may represent a potential mechanism to regulate protein association with specific organelles or the plasma membrane. Round spermatids exhibited only weak immunostaining with antibody against the β-subunit of FTase, whereas elongating spermatids exhibited a high level of FTase expression that was segregated to the cytoplasmic lobe surrounding the anterior flagellum. Although FTase was released with the residual body, mature spermatids retained FTase within the midpiece and cytoplasmic droplet. In epididymal spermatozoa, FTase remained associated with the cytoplasmic droplet during its migration to the midpiece-principal piece junction; following release of the cytoplasmic droplet, no immunodetectable FTase was noted in the midpiece segment. Immunoblotting demonstrated the presence of both the α and β subunits of FTase in sperm lysates. The temporal expression pattern and restricted distribution of FTase in spermatids and epididymal spermatozoa suggest a potential role in regulating protein association with specific organelles and/or membrane domains of the mature spermatozoon. Mol. Reprod. Dev. 48:71–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
To identify a molecule involved in sperm‐egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm‐surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti‐SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti‐SGP antibody recognized large molecules, with molecular masses of 65–150 kDa and minor smaller molecules with masses of 20–28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle‐binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm‐egg membrane binding and is responsible for the establishment of fertilization in Xenopus.  相似文献   

8.
A motility inhibiting factor (MIF) in sperm plasma membrane of mammalian spermatozoa (goat) has been demonstrated. This factor has been purified to apparent homogeneity by Sepharose-6B affinity chromatography and DEAE-cellulose ion-exchange chromatography. The molecular weight of the isolated factor has been estimated as 98 kDa by molecular sieving and analytical HPLC. SDS-polyacrylamide gel electrophoresis of MIF gave a single band of 100 kDa, indicating that the factor is a monomer. MIF is a thermo-stable factor and it inhibited the spermatozoa motility in a dose dependent manner. It is a glycoprotein as it binds with high affinity to Sepharose-6B and the affinity matrix-bound factor can be eluted with D-galactose. Data show that the motility inhibiting activity is lost completely when treated with beta-galactosidase indicating that its sugar side chain is essential for its activity. Addition of MIF antibody caused significant enhancement of forward motility of the caput and cauda-spermatoza. This antibody may thus be useful for solving some of the problems of human infertility due to low sperm motility. The motility inhibiting protein may also be useful as a vaginal contraceptive.  相似文献   

9.
Indirect immunofluorescence of mouse caput and caudal sperm shows distinctly different distributions of Spam1 protein, which is associated with structural and functional differences of the molecule. Spam1 is uniformly distributed over the surface of the head of caput sperm while in caudal sperm, light and confocal microscopy demonstrate that it is localized to the anterior and posterior regions. The hyaluronidase activity of Spam1 in acrosome‐intact caput sperm was significantly lower (4.3‐fold; P < 0.0001) than that of caudal sperm. The increase in enzymatic activity in caudal sperm is accompanied by a reduction in the molecular weight (MW): in extracts from caput sperm there was a major band at ∼74 kDa and a minor band at ∼67 kDa; while for the cauda there was a major band at ∼67 kDa and minor bands at ∼70 and ∼56 kDa. Additionally, the bands from caput sperm were 4.9 to 7.7‐fold less intense than those from caudal sperm. This decreased affinity for the polyclonal anti‐Spam1 suggests the presence of different surface characteristics of the molecule from the two epididymal regions. Computer analysis of the protein structure from Spam1 cDNA sequence reveals four putative N‐linked glycosylation sites, and enzymatic deglycosylation suggests that all sites are functional. After endoglycosidase activity of extracts from caput and caudal sperm, both show a major band with a MW of ∼56 kDa, the size of the membrane‐anchored polypeptide backbone. Based on the difference in size and intensity of the Spam1 bands and hyaluronidase activities from caput and caudal sperm, the data suggest that the activation of Spam1 during epididymal maturation is regulated by deglycosylation. Mol. Reprod. Dev. 52:196–206, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

11.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

12.
The decrease in motility of porcine cauda epididymal sperm was less than that of caput epididymal sperm in the medium containing bicarbonate. This may be due to the difference of sensitivity of adenylate cyclase to bicarbonate between mature and immature sperm; activation of mature sperm enzyme by bicarbonate was higher than that of immature sperm. Nondialysable fraction of egg yolk prevented the decrease in motility of immature sperm in the presence of bicarbonate, but it was not effective for the motility of mature sperm under the same condition, because only bicarbonate is sufficient for the maintenance of its motility. In the absence of bicarbonate, both mature and immature sperm required egg yolk to maintain motility. The favorable effect of egg yolk on the motility is ascribed to the enhancement of intracellular cAMP level. Partial fractionation of egg yolk showed that water-insoluble lipoprotein fraction contains factor(s) which activates adenylate cyclase in sperm plasma membrane. This is the first report in which high molecular weight activator of the sperm enzyme was demonstrated.  相似文献   

13.
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.  相似文献   

14.
Early investigators reported the occurrence of unidentified protein factors in biological fluids that may regulate sperm motility essential for fertility potential. This study reports for the first time purification of a forward motility stimulating protein (FMSF-I), to apparent homogeneity, from a biological fluid (buffalo blood serum) and its characterization. FMSF-I is the major motility protein of buffalo serum: a rich source of the factor. FMSF showed high protein specificity and affinity for activating forward motility of goat cauda epididymal spermatozoa. The motility promoter at 0.5 microM level showed maximal activity when nearly 60%-70% of spermatozoa expressed forward motility. It is a 66 kDa monomeric acidic protein rich in aspartate, glutamate, and leucine with isoelectric point of 3.7. FMSF: a Mg2+ -dependent protein binds to concanavalin A-agarose and the glycoprotein nature of FMSF has been confirmed by PAS staining. The factor lost activity completely when treated with alpha-mannosidase showing that the sugar part of the protein is essential for its biological activity. FMSF has no species specificity for its motility-activating potential. Sperm surface has specific receptors of FMSF, which is strongly immunogenic. The factor is present in testis and epididymis although liver is its richest source. Motility promoting efficacy of FMSF is markedly higher than the well-known non-protein motility activators: theophylline and bicarbonate or their combination. FMSF is a physiological activator of sperm motility and as a slaughterhouse byproduct it has potentiality for solving some of the problems of animal breeding, conservation of endangered species, and human infertility: a global social problem.  相似文献   

15.
To analyze sperm surface molecules involved in sperm–egg envelope binding in Xenopus laevis, heat‐solubilized vitelline envelope (VE) dot blotted onto a polyvinylidene difluoride (PVDF) sheet was incubated with a detergent extract of sperm plasma membrane (SP‐ML). The membrane components bound to the VE were detected using an antibody library against sperm plasma membrane components, and a hybridoma clone producing a monoclonal antibody (mAb) 16A2A7 was identified. This mAb was used in a Far Western blotting experiment in which VE was separated by electrophoresis, and then transferred to a PVDF strip that was incubated with SP‐ML. It was found that SP‐ML binds to the VE component gp37 (Xenopus homolog of mammalian ZP1). The antigens reactive to mAb 16A2A7 showed apparent molecular weights of 65–130 and 20–30 kDa, and were distributed relatively evenly over the entire sperm surface. Periodate oxidation revealed that both the pertinent epitope on the sperm surface and the ligands of VE gp37 were sugar moieties. VE gp37 was exposed on the VE surface, and the mAb 16A2A7 dose‐dependently inhibited sperm binding to VE. The sperm membrane molecules reactive with mAb 16A2A7 also reacted with mAb 2A3D9, which is known to recognize the glycoprotein SGP in the sperm plasma membrane and is involved in interactions with the egg plasma membrane, indicating that the sperm membrane glycoprotein has a bifunctional role in Xenopus fertilization. Mol. Reprod. Dev. 77: 728–735, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The sperm surface protein fertilin functions in sperm-egg interaction. On guinea pig and bovine sperm, fertilin is a heterodimer of alpha and beta subunits. Both subunits are initially synthesized as precursors and then proteolytically processed by removing N-terminal domains. Since the mouse is currently the main mammalian species in which fertilization is studied, in the present report, we analyzed the structure, processing, and expression of fertilin in mouse. We found that the processing of mouse fertilin beta occurs during epididymal maturation and involves changes in the cytoplasmic tail domain as well as the N-terminal domains. Although we (R. Yuan et al., 1997, J. Cell Biol. 137, 105-112) and others (M. S. Chen et al., 1999, J. Cell Biol. 144, 549-561) have previously reported that mature fertilin beta is 55-57 kDa, here we show that 55 kDa is an unrelated protein in the sperm extract which cross-reacts with an antibody that recognizes precursor, but not mature, fertilin beta. Comparison of Western blots of wild-type and fertilin beta knockout sperm revealed that authentic, mature fertilin beta is 45 kDa. We also obtained direct evidence that mouse fertilin alpha and beta exist as a heterodimer. In addition, we found that in mice lacking the fertilin beta subunit, fertilin alpha is absent from mature sperm. A widely proposed model for sperm-egg fusion suggests that fertilin alpha is the sperm component that promotes membrane fusion by undergoing a conformational change that exposes a virus-like, hydrophobic fusion peptide. Because sperm lacking fertilin alpha and fertilin beta can fuse with eggs at 50% the wild-type rate, this model is called into question. The results suggest instead that other gamete surface molecules act to promote membrane fusion and that fertilin's role in gamete fusion is in sperm-egg plasma membrane adhesion.  相似文献   

17.
Glioma pathogenesis‐related 1‐like protein1 (GliPr1L1) was identified by liquid chromatography‐tandem mass spectrometry analyses of proteins associated to bovine sperm lipid raft membrane domains. This protein belongs to the CAP superfamily including cysteine‐rich secretory proteins, Antigen 5 and pathogenesis‐related 1 protein. PCR analysis revealed that GliPr1L1 is expressed in testis and, at a much lower level, all along the epididymis. Western blotting showed a similar distribution of GliPr1L1 in testicular and epididymal tissue extracts. In the epididymal lumen, GliPr1L1 was associated with the maturing spermatozoa and epididymosomes all along the excurrent duct but was undetectable in the soluble fraction of epididymal fluid. The protein was detectable as multiple isoforms with a higher MW form in the testis and proximal caput. Treatments with PNGase F revealed that N‐glycosylation was responsible of multiple bands detected on Western blots. These results suggest that the N‐glycosylation moiety of GliPr1L1 is processed during the transit in the caput. Western blots demonstrated that GliPr1L1 was associated with the sperm plasma membrane preparation. GliPr1L1 is glycosyl phosphatidyl inositol (GPI) anchored to caput and cauda spermatozoa as demonstrated by the ability of phosphatidylinositol specific phospholipase C to release GliPr1L1 from intact sperm cells. Lipid raft membrane domains were separated from caput and cauda epididymal spermatozoa. GliPr1L1 was immunodetectable in the low buoyant density fractions where lipid rafts are distributed. GliPr1L1 was localized on sperm equatorial segment and neck. In vitro fertilization performed in presence of anti‐GliPr1L1 showed that this protein is involved in sperm–zona pellucida interaction. J. Cell. Physiol. 227: 3876–3886, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Even though the epididymis produces an environment promoting sperm maturation and viability, some sperm do not survive transit through the epididymal tubule. Mechanisms that segregate the epididymal epithelium and/or the viable sperm population from degenerating spermatozoa are poorly understood. We report here the identification and characterization of HEP64, a 64-kDa glycoprotein secreted by principal cells of the corpus and proximal cauda epididymidis of the hamster that specifically binds to and coats dead/dying spermatozoa. The HEP64 monomer contains approximately 12 kDa carbohydrate and, following chemical deglycosylation, migrates as a approximately 52-kDa polypeptide. Both soluble (luminal fluid) and sperm-associated HEP64 are assembled into disulfide-linked high molecular weight oligomers that migrate as a doublet band of 260/280 kDa by nonreducing SDS-PAGE. In the epididymal lumen, HEP64 is concentrated into focal accumulations containing aggregates of structurally abnormal or degenerating spermatozoa, and examination of sperm suspensions reveals that HEP64 forms a shroudlike coating surrounding abnormal spermatozoa. The HEP64 glycoprotein firmly binds degenerating spermatozoa and is not released by either nonionic detergent or high salt extraction. Electron microscopic immunocytochemistry demonstrates that HEP64 localized to an amorphous coating surrounding the abnormal spermatozoa. The potential mechanisms by which this epididymal secretory protein binds dead spermatozoa as well as its possible functions in the sperm storage function of the cauda epididymidis are discussed.  相似文献   

19.
Since 1976 many studies have been reported on the occurrence and functional significance of ecto-protein kinases in a variety of cell types although their precise biochemical identity is largely unknown. This study reports for the first time purification to apparent homogeneity of an ecto-protein kinase (ecto-CIK) and some of its characteristics using caprine sperm as the cell model. The ecto-CIK is a unique membrane-specific serine/threonine protein kinase. It is a strongly basic 115 kDa protein made up of two subunits: 63 and 55 kDa. The ecto-kinase undergoes a remarkable lateral movement on the outer cell surface culminating in capping on the sperm acrosomal tip. MPS, its major protein substrate is also located on the acrosomal tip. Both ecto CIK and MPS serve as potential regulators of flagellar motility. This novel enzyme appears to be major kinase responsible for the reported regulation of mammalian cellular functions by modulating phosphorylation of the membrane-bound proteins.  相似文献   

20.
Rabbit polyclonal antibodies were raised against ram cauda epididymal sperm proteins solubilized by N-octyl-beta-D-glucopy-ranoside (anti-CESP) and against proteins of the fluid obtained from the cauda epididymidis (anti-CEF). The anti-CESP polyclonal antibody reacted with several bands from 17 to 111 kDa with different regionalization throughout the epididymis. The strongest epitopes at 17 kDa and 23 kDa were restricted to the cauda epididymidis. The anti-CEF polyclonal antibody reacted mainly with a 17-kDa and a 23-kDa compound in the cauda sperm extract. These cauda epididymal 17- and 23-kDa proteins disappeared after orchidectomy, but they reappeared in the same regions after testosterone supplementation, indicating that they were secreted by the epithelium. The fluid and membrane 17- and 23-kDa antigens had a low isoelectric point and were glycosylated. The fluid 17- and 23-kDa proteins had hydrophobic properties: they were highly enriched in the Triton X-114 detergent phase and could be extracted from the cauda epididymal fluid by a chloroform-methanol mixture. These proteins were further purified, and their N-terminal sequences did not match any protein in current databases. A polyclonal antibody against the fluid 17-kDa protein recognized the protein in the cauda epididymal sperm extract and immunolocalized it on the sperm flagellum membrane and at the luminal border of all cells in the cauda epididymal epithelium. These results indicated that secreted glycoproteins with hydrophobic properties could be directly integrated in a specific domain of the sperm plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号