首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of a third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encodes the major T4 ssDNA-binding protein (the scaffolding of DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. We conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before or after DNA replication.  相似文献   

2.
D V Amla 《Mutation research》1983,107(2):229-238
Synchrony with respect to cell division and DNA synthesis in cultures of Anacystis nidulans was induced by a light-dark-light regimen. At periodic intervals in the cell-division cycle, DNA, RNA, protein contents, UV sensitivity and induction of mutations were assayed. The DNA, RNA and protein syntheses were periodic and reached maximal values before the separation of cells. The DNA content started to increase at about the 5th hour and doubled at about the 13th hour followed by a plateau of 4-6 h. Wild-type A. nidulans was highly sensitive to UV radiation during the period showing an increase in cell number (rise phase) and the early part of DNA synthesis (synthetic phase). Significant resistance to UV, however, developed in the later stage of the DNA synthesis. This resistance decreased considerably during the next rise phase. On the other hand, in a UV-sensitive strain of A. nidulans (uvs67) there was no appreciable change in the UV sensitivity during the cell-division and DNA-synthesis phases. Induction of mutation frequency patterns of all the markers (fil, blu, yel, vir, nit, strR) in the wild-type showed a short initial lag followed by an abrupt increase resulting in a peak of mutation frequency in the early part of DNA synthesis and subsequently a second plateau. The induction of mutation frequencies in the uvs67 strain was comparatively low and remained constant throughout the cell division cycle. These results suggest the possibilities of an error-prone dark repair and a stringent relationship between DNA replication and repair of UV damage for expression of mutations in cyanobacterium A. nidulans.  相似文献   

3.
Non-essential bacteriophage T4 mutants uvs58 and uvs79 showed a lower UV sensitivity than either the excision-repair mutant v am5 or the replication-dependent recombination-repair mutant y10. The UV sensitivity of double and triple mutants carrying one of the mutations uvs58 or uvs79, and v am 5 or (and) y10 was higher than the sum of the sensitivities of the single mutants. The uvs58 mutation was mapped to the early gene region, close to amN81 (gene 41). The unirradiated mutants uvs58 and uvs79 accumulated newly synthesized DNA at a slower rate than wild-type T4. Double mutants uvs58:am59 and uvs79:am59 showed DNA synthesis in E. coli B su- to be arrested at a 3--5 times lower level than that in am59-infected cells. Chloramphenicol, added 9--12 min after infection, suppressed arrests of DNA synthesis, the double mutants showing a lag of 8 min as compared with am59. Results from analysis of sucrose gradients of parental uvs58 and uvs79 DNA were in agreement with the suggestion of a mutation in an early function. The mutants uvs58 and uvs79 are suggested to be defective in a component of the DNA replication apparatus with a function in the adaptation to irregularities in the DNA structure. The third pathway of UV repair is tentatively designated as non-catalytic replication repair.  相似文献   

4.
The biological and repair responses of Mut 8–16, an ultraviolet radiation (UV)-resistant derivative of CHO-K1, were characterized with respect to UV and to the active chemical carcinogen, benzo[a]pyrene-4,5-oxide. In comparison to the parent, the UV-survival response curve of this mutant showed a significantly larger shoulder but little or no difference in the slope of the exponential survival region. In addition, the mutant cell line demonstrated significantly larger mutation frequencies at high survival UV fluences, but smaller mutation frequencies at high survival equitoxic concentrations of the carcinogen benzo[a]pyrene-4,5-epoxide relative to the parent cell. However, these relative differences in mutation frequencies between parent and mutant appeared to decrease as survival decreased. Despite these observations there were no measurable differences in excision-repair, or in post-replication repair although the mutant appeared to show a nominal reduction (not an enhancement) of replication-repair activity following the UV exposure. These data imply there is another lesion recognition system in CHO cells whose effects on survival and mutation are best observed at low doses of carcinogen and/or radiation but which are masked at higher doses where major repair processes dominate. The dissimilar relationship of cytotoxicity to mutation induction frequency observed in UV and carcinogen treated mutant vs. parent cell lines, imply that the probabilities for lethality and mutation are independent of one another in the presence of otherwise unrepaired (residual) damage.  相似文献   

5.
Phage ? treated extracellularly with hydroxylamine (HA) was preadsorbed to hcr, exr or wild-type (HY) host cells and plated with HY indicator. 5 plaque mutation types were scored. The frequency distributions of the 5 mutation types (mutation spectra) differed with the hosts, the spectrum in exr especially deviating significantly from those in hcr and HY. This indicates electiveness of repair of certain (pre-) mutations within different genomic regions. HA treatment time (dose) influenced the spectra, too, owing to three mutation types giving linear (one-hit) dose curves and two giving parabolic (about two-hit) curves. The host type did not influence these curve shapes. These findings show that the number of HA hits depends on the genomic region where (pre-) mutations occur.Inactivation of phages as well as cells was strongest in exr compared with hcr and HY hosts (factor 1.3). In contrast, induction of all 5 mutation types was lower in exr (factor about 0.5) and hcr (factor about 0.8) than in HY. This indicates that both repair types (probably post- and pre-replicative) are needed for perfecting part of the HA-induced mutations. The part lacking in repair-defective hosts may be caused by lethality within these hosts of certain premutative lesions. The frequency of mixed compared with pure mutant clones was small. Its dose dependence may be due to recessive lethal lesions within the non-premutated DNA strand.  相似文献   

6.
E K?fer  O Mayor 《Mutation research》1986,161(2):119-134
To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or gamma-rays. About half of them contained associated translocations and many were hypersensitive to UV and/or defective in meiosis. Two are alleles of the known uvsB gene while most others define new genes. In addition, among available uvs mutants many were found to be MMS-sensitive. Some of the various uncharacterized ones were identified as alleles of known uvs, but 5 of them were mapped in 2 new genes, uvsH and uvsJ. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. 3 epistatic pairs were identified, (1) uvsF and H, (2) uvsB and D, and (3) uvsC and E. Conclusive interpair tests were difficult, because such double mutant combinations were frequently lethal or nearly so. The first pair, uvsF and H, shared some of the properties of excision-defective mutants, both uvs being very highly sensitive to UV for mutation as well as survival. But unlike such mutants, uvsH was also sensitive to gamma-rays and defective in meiosis. Both uvs showed normal levels of meiotic recombination, but greatly increased spontaneous mitotic crossing-over, being the most "hyperrec" types among all uvs. The second pair, uvsB and uvsC, which was similarly hyperrec showed only slight increases of UV-induced mutation (less than 2-fold). As a main effect, these uvs caused very high frequencies of unbalanced, unstable segregants from diploid conidia (30 X), but few of these were recognizable aneuploids. The third pair, uvsC and E, which are known to be rec- for gene conversion, caused reduced mitotic crossing-over in diploids and increased levels of haploid segregants. These mutants are spontaneous mutators, but showed less UV-induced mutation than wild-type controls.  相似文献   

7.
DNA double-strand breaks are the molecular lesions the repair of which leads to the reappearance of the shoulder observed in split-dose experiments. This conclusion is based on results obtained with the help of a diploid yeast mutant rad 54-3 which is temperature-conditional for the repair of DNA double-strand breaks. Two repair steps must be met to yield the reappearance of the shoulder on a split-dose survival curve: the repair of double-strand breaks during the interval between two doses and on the nutrient agar plate after the second dose. In yeast lethality may be attributable to either an unrepaired double-strand break (i.e. a double-strand break is a potentially lethal lesion) or to the interaction of two double-strand breaks (misrepair of double-strand breaks). Evidence is presented that the two cellular phenomena of liquid holding recovery (repair of potentially lethal damage) and of split-dose recovery (repair of sublethal damage) are based on the repair of the same molecular lesion, the DNA double-strand break.  相似文献   

8.
The induction of lethal sectoring and pure mutant clones by ultraviolet light has been studied in a homogeneous G1 population of Saccharomyces cerevisiae grown in a normal growth medium. At the lowest UV dose of 250 ergs, which corresponds to a shoulder in the survival curve, all mutants appeared as pure clones. At higher doses the frequency of mosaic mutants progressively increased. These results indicate a relationship between the highest frequency of complete mutants and the maximum repair activity. In addition, the frequency of lethal sectoring at all doses tested was too low to account for the origin of pure mutant clones.  相似文献   

9.
Induced Repair of Genetic Damage in Neurospora   总被引:3,自引:1,他引:2       下载免费PDF全文
Repair of genetic damage in Neurospora has been studied using a procedure in which one strain is exposed to a potentially lethal dose of UV before being joined in a heterokaryon with an undamaged strain. We have monitored the ability of the second strain to rescue the first. The extent of rescue is greatly enhanced when the rescuing strain has itself received a small, nonlethal dose of UV, thus demonstrating an inducible repair system.--The experiment was modified by substituting X rays or nitrous acid for UV as either the damaging agent or the inducing agent. In every combination, induced rescue was observed.--Three repair-deficient mutants (uvs-2, uvs-3 and uvs-6) were substituted for wild type (uvs+) as the rescuing component to find out whether any of them lacked the inducible repair system. Both uvs-2 and uvs-6 demonstrated inducible repair; uvs-3 showed none, but gave a high level of repair without induction, suggesting that it is a regulation (derepressed) mutant of an inducible repair system.  相似文献   

10.
Photoreactivation (PR) of green colony-forming ability in Euglena is pH-insensitive from pH 6.0 to 8.0 and temperature-sensitive with a maximum rate at 35°C. There is no PR at 0°C. The rate of PR varies with the growth stage of the cells; PR of exponential phase cells is slower than that of stationary phase cells. The reciprocity rule holds for PR over a 6-fold range of intensity. The shape of PR curves is a function of the UV dose; there appears to be a progressive increase in multiplicity until a limiting multiplicity is reached as indicated by the fact that curves for high doses are superposable. Dark-grown and light-grown cells give the same PR response for comparable UV doses. UV inactivation of cells which have been treated with UV and then with PR light shows that, if the PR dose is sufficiently large, the same UV-inactivation curve is obtained as for nonpretreated control cells. Doses of PR lower than the saturating dose produce UV-inactivation curves, the ultimate slopes of which are parallel to the slope of the control curve, but which show reduced multiplicity. The multiplicity of these curves increases with increasing PR dose. The UV inactivation of green colony-forming ability in Euglena is completely photoreactivable at the doses studied, in contrast with the UV inactivation of colony-forming ability, which occurs at considerably higher UV doses and behaves like most other photoreactivable systems, showing a photoreactivable sector of 0.32.  相似文献   

11.
Base excision repair (BER) and nucleotide excision repair (NER) are two main cellular responses to DNA damage induced by various physical and chemical factors. After exposure of the strain that carries the NER-blocking rad2 mutation to UV light, several mutants hypersensitive to the UV light lethal action and simultaneously sensitive to methylmethanesulphonate (MMS) were isolated. Two of these mutants (Uvs64 and Uvs212) were examined in detail. The mutants were found to carry recessive, monogenically inherited lesions that had pleiotropic, though different, phenotypes: both mutants were also sensitive to nitrous acid (HNO2), whereas Uvs212 was sensitive to hydrogen peroxide as well. Moreover, the homozygote for the uvs212 mutation, but not for uvs64, blocks the sporulation. Since the mutations examined were not allelic to any of the known rad mutations that cause MMS sensitivity or to each other, it is concluded that two new genes involved in the control of yeast DNA repair were detected. Furthermore, these genes were mapped to different regions of the right arm of chromosome 2 where repair genes were not found. Thus, two new genes, designated RAD29(UVS64) and RAD31(UVS212) and probably involved in base excision repair, were identified.  相似文献   

12.
The frequencies of spontaneous and UV-induced recessive lethal mutations were compared for UV-sensitive and wild-type heterokaryons of Neurospora crassa. These heterokaryons were homokaryotic either for one of two alleles of uvs-3, or for uvs-6 or uvs+. For uvs-3, which is known to have mutator effects, spontaneous recessive lethals were found to be 4-6 times more frequent than observed in uvs+. After correction for clonal distribution of spontaneous mutants, an observed 2-fold increase for uvs-6 was not statistically significant and may have been due to chance occurrence of a few large clones of mutants. Treatment with low doses of UV (50-200 J/m2) produced very similar overall rates of increase for recessive lethals in uvs and uvs+ heterokaryons. This means, that in contrast to results obtained when mutation to ad-3 was measured, both uvs-3 alleles showed highly significant increases for recessive lethals when treated with UV. It is proposed that certain types of UV damage may be processed into recessive lethal mutations by an alternate mechanism from that responsible for viable mutations.  相似文献   

13.
Severe combined immune deficiency (SCID) mice exhibit limited repair of DNA double-strand breaks and are sensitive to ionizing radiation due to a mutation of the DNA-dependent protein kinase catalytic subunit gene. To elucidate the effects of deficient DNA double-strand break repair on radiation-induced carcinogenesis, the dose-response relationship for the induction of all tumor types was examined in wild-type and SCID mice. In wild-type mice, the incidence of thymic lymphomas at gamma-ray doses up to 1 Gy was almost equal to the background level, increased gradually above 1 Gy, and reached a maximum of 12.5% at 5 Gy, which is indicative of a threshold dose of less than 1 Gy. SCID mice were extremely susceptible to the induction of spontaneous and radiation-induced thymic lymphomas. The incidence of thymic lymphomas in SCID mice irradiated with 0.1 Gy or less was similar to the background level; that is, it increased markedly from 31.7% at 0.1 Gy to 51.4% at 0.25 Gy, and reached a maximum of 80.6% at 2 Gy, suggesting the presence of a threshold-like dose at low gamma-ray doses, even in radiosensitive SCID mice. As the average latency for the induction of thymic lymphomas at 0.1 Gy was significantly shortened, the effect of 0.1 Gy gamma-rays on thymic lymphoma induction was marginal. The high susceptibility of SCID mice to develop thymic lymphomas indicates that thymic lymphomas are induced by a defect in DNA double-strand break repair or V(D)J recombination. Excessive development of tumors other than thymic and nonthymic lymphomas was not observed in SCID mice. Furthermore, our data suggest that the defective double-strand break repair in SCID mice is not a major determinant for the induction of nonlymphoid tumors.  相似文献   

14.
G V Evseeva  S V Kameneva 《Genetika》1977,13(11):1981-1987
To study the inheritance of the sensitivity to UV, X-rays, methylmethanesulphonate (MMS), nitrosoguanidine (NG) and nitrous acid (NA) in five uvs mutants of Aspergillus nidulans, having multiple sensitivity to these factors, the sensitivity of recombinants obtained from crossing uvs mutants with uvs+ strain, resistant to all the factors analysed, and uvs leads to uvs+ revertants is investigated. Four uvs mutants (15, 17, 19 and 26) are found to have a nomogenic control of sensitivity to different mutagens. In one mutant (uvs11) the sensitivity to five factors is controlled by two non-linked mutations, one of them determining the sensitivity to UV, NG, NA, and the other--to X-rays and MMC. Phenotypic manifestations of uvs mutations is modified by cell genotype, both chromosomal and cytoplasmic factors being responsible for the modification. Phenotypic modification of uvs mutation results in the change to some (but not to all) mutagenic factors. It suggests, that not the product of uvs gene, but some other components of the reparation complex are modified. Otherwise, reparation of different DNA damages can be carried out by a single enzyme acting in different reparation complexes.  相似文献   

15.
We have directly compared in resting human mononuclear leukocytes the DNA repair effects caused by ADP-ribosyl transferase (ADPRT) activity following DNA damage induction by gamma radiation, UV radiation, ethylene oxide (EO) and N-acetoxy-2-acetylaminofluorene (NA-AAF). The presence of inhibitors of ADPRT during the quantitation of unscheduled DNA synthesis (UDS) resulted in about a 2-fold increase of UDS when induced by gamma radiation, UV radiation or EO. The stimulation of UDS by EO, UV- or gamma-radiation in the presence of an ADPRT inhibitor was equally strong whether 1 mM or 10 mM hydroxyurea was used to suppress scheduled DNA synthesis. The level of NA-AAF induced UDS was not affected by inhibitors of ADPRT. In addition, direct estimation of ADPRT activity revealed that at doses giving maximal UDS, NA-AAF damage did not induce a measurable enzymatic activity whereas gamma-radiation, UV radiation and EO all showed a significant dose response increase. We have interpreted our data to mean that NA-AAF induced UDS estimates DNA repair relating mainly to DNA lesions that are recognized with difficulty, and hence, the rate of endonuclease-induced DNA strand break accumulation is not sufficient to allow a stimulation of ADPRT and affect the quantitation of UDS.  相似文献   

16.
The curves of UV (254 nm) induced pyrimidine dimers (endonuclease sensitive sites) vs. photoreactivating blacklight (365 nm) dose for cultured chick embryo fibroblasts reveal several new features. When the cells are incubated in the dark at 37 degrees following UV (254 nm) treatment, the efficiency of subsequent photorepair increases for the first few hours post-UV. The efficiency then remains approximately constant for several hours. Photorepair data obtained during this later period were plotted as the logarithm of dimer-enzyme complexes available for photoreactivation vs. blacklight (365 nm) dose. For a fixed damaging UV (254 nm) dose, the resulting curve has a shoulder of approximately 6-10 kJ/m2 followed by a straight line portion with a slope of magnitude about 1.5 X 10(-4) m2/J for UV doses up to 15 J/m2. For higher UV doses the shoulder remains about the same, but the slope decreases in magnitude. The shoulder is interpreted to indicate that a light-dependent step is necessary to activate the enzyme. The decrease in slope with increased UV dose together with some split photoreactivation dose experiments suggests that some site-to-site motion and multiple site function of the photorepair enzyme molecules may come into play at the higher levels of damage, but the evidence indicates that these complications are relatively unimportant at low UV doses.  相似文献   

17.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

18.
To further our understanding of how plants defend against the harmful effects of ultraviolet (UV) light, we characterized an Arabidopsis mutant hypersensitive to UV-B. This mutant, UV resistance locus 8-1 (uvr8-1), contains a single recessive mutation at the bottom of chromosome 5. Fine-scale mapping localized uvr8-1 to a 21-kb locus containing five predicted open reading frames. Sequencing of this entire region revealed that the uvr8-1 allele contains a 15-nucleotide deletion in a gene similar to the human guanine nucleotide exchange factor regulator of chromatin condensation 1. This mutation reduces the UV-B-mediated induction of flavonoids and blocks chalcone synthase mRNA and protein induction. In contrast, uvr8-1 has enhanced induction of PR1 and PR5 proteins in response to UV-B, an indication of increased UV-B injury. These results suggest that UVR8 acts in a UV-B signal transduction pathway leading to induction of flavonoid biosynthesis.  相似文献   

19.
The kinetics of micronucleated polychromatic erythrocytes (MN-PCE) induction by methylnitrosourea (MNU) was determined in mice with the purpose of discerning whether or not the kinetics reflects the mechanism of chromosome break induction. A very long latency period (LP) was observed which is not compatible with an agent that does not require metabolic activation or incorporation to DNA for acting, but this is consistent with the mechanism demonstrated earlier that MNU causes chromosome breaks throughout the repair of mismatches induced by the alkylation of bases in a previous division. This is also supported by the presence of two rates of MN-PCE induction with respect to dose, which suggests that MN-PCE are induced by two mechanisms, an efficient one induced with the lower dose, and another less efficient one induced with higher doses. A similar behavior was observed in the curve of LP vs. dose, the lower dose causes 8 h of LP and higher doses increase LP but not proportionally to dose. The lower dose did not cause a reduction in the proportion of polychromatic erythrocytes, suggesting that this dose did not produce an important cytotoxic effect that could explain the long LP.  相似文献   

20.
Within a group of more than 20 UV-sensitive mutants of T4D, 4 UV-sensitive mutants with the same sensitivity as T4 x were isolated independently of each other. They were uvs9, uvs21, uvs35, and uvs52. The double mutants with x and y10 were constructed: they are slightly more UV sensitive than T4 v1. The double mutant with uvs5 was not found. The mutations of uvs9, 21, 35, and 52 are closely linked with v1. The photoreactivable sector (PRS) is 0.4. One of the mutants, uvs52, has the same sensitivity for methyl methanesulphonate (MMS) as T4+, shows a stronger multiplicity reactivation than the wild type, shows the same sensitivity relative to T4+ and T4 v1 in Luria-Latarjet tests and in monocomplex UV inactivation, and raises the recombinant frequency in crosses with irradiated phage. The uvs52+ function has the same sensitivity to UV as the v+ function. Complementation between uvs52 and v1, if present is difficult to demonstrate owing to an appreciable MR contribution to increased survival. The possibility that uvs52 is an allele of v1 is discussed. The observations fit the assumption that uvs52 is an excision-repair mutant with a low excision rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号