首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional nuclear magnetic resonance (NMR) methods have been successfully used to assign resonances in the 1H NMR spectrum of intact viable rat mammary adenocarcinoma cells. Two-dimensional scalar-correlated spectroscopy identifies connectivities for resonances of the lipid acyl chains in the plasma membrane of these cells. We expect that two-dimensional scalar-correlated methods may be of general use for providing unequivocal assignments in the complex and often poorly resolved 1H NMR spectra of cells.  相似文献   

2.
Some biological characteristics of cancer cells and solid tumors are identifiable by the high resolution NMR relaxation behavior of their nonaqueous components. Chemical analysis and two-dimensional scalar correlated (COSY) NMR spectroscopy show these resonances arise from neutral lipid in the plasma membrane. Triglyceride is shown to be the main plasma membrane component giving rise to the NMR spectrum, while soluble nonmembrane components account for 90% of the remaining resonances in the spectrum of intact cells. The presence of triglyceride has been detected by chemical analysis in highly purified plasma membranes from two different cell lines. The COSY spectra of cancer cells are comparable with that obtained for the triglyceride-rich very low density human lipoprotein.  相似文献   

3.
The proapoptotic Bcl-2 family protein Bid is cleaved by caspase-8 to release the C-terminal fragment tBid, which translocates to the outer mitochondrial membrane and induces massive cytochrome c release and cell death. In this study, we have characterized the conformation of tBid in lipid membrane environments, using NMR and CD spectroscopy with lipid micelle and lipid bilayer samples. In micelles, tBid adopts a unique helical conformation, and the solution NMR (1)H/(15)N HSQC spectra have a single well resolved resonance for each of the protein amide sites. In lipid bilayers, tBid associates with the membrane with its helices parallel to the membrane surface and without trans-membrane helix insertion, and the solid-state NMR (1)H/(15)N polarization inversion with spin exchange at the magic angle spectrum has all of the amide resonances centered at (15)N chemical shift (70-90 ppm) and (1)H-(15)N dipolar coupling (0-5 kHz) frequencies associated with NH bonds parallel to the bilayer surface, with no intensity at frequencies associated with NH bonds in trans-membrane helices. Thus, the cytotoxic activity of tBid at mitochondria may be similar to that observed for antibiotic polypeptides, which bind to the surface of bacterial membranes as amphipathic helices and destabilize the bilayer structure, promoting the leakage of cell contents.  相似文献   

4.
Programmed cell death was induced by HSV-tk gene therapy in rat BT4C glioma cells, and metabolite changes associated with cell damage were monitored in vivo by 1H NMR spectroscopy and ex vivo by high resolution magic angle spinning (HRMAS) 1H NMR, and in vitro in perchloric acid extracts of tumors. Metabolite concentrations, as quantified in vivo using water as an internal reference and in vitro in extracts, were correlated with cell density. The results showed that both in vivo and in vitro glycine and creatine concentrations followed volume-averaged cell density, whereas that of total choline-containing compounds was unaffected by a cell loss approaching 60%. Meanwhile, both saturated and unsaturated 1H NMR visible lipids increased. HRMAS 1H NMR spectroscopy of the tumor samples at 14.1 tesla demonstrated the presence of nucleotide peaks from adenosine and uridine nucleotides in glioma samples ex vivo. The assignment of a doublet at 7.95 ppm to UDP was confirmed by spiking experiments of tumor extracts in conjunction with 1H and 31P NMR spectroscopy. HRMAS also resolved the choline-containing peak at 3.2 ppm in vivo into resonances from choline (3.20 ppm), phosphocholine (3.22 ppm), glycerophosphocholine (3.24 ppm), and taurine (3.26 ppm). These resonances were uncorrelated with temporal progression through programmed cell death. Our results show that 1H NMR-detected lipids and some of the small molecular weight metabolites respond to gene therapy. However, the choline-containing compounds are unaffected by severe decline in cell density. The latter observation supports the idea that triacylglycerols, rather than membrane phospholipids, are the key components of 1H NMR visible lipids, and it also casts doubt on the validity of resonance of choline-containing compounds as a diagnostic marker of programmed cell death in vivo.  相似文献   

5.
We studied domain formation in mixtures of the monounsaturated lipids SOPC and POPE as a function of temperature and composition by NMR. Magic angle spinning at kHz frequencies restored resolution of (1)H NMR lipid resonances in the fluid phase, whereas the linewidth of gel-phase lipids remained rather broad and spinning frequency dependent. In regions of fluid- and gel-phase coexistence, spectra are a superposition of resonances from fluid and gel domains, as indicated by the existence of isosbestic points. Quantitative determination of the amount of lipid in the coexisting phases is straightforward and permitted construction of a binary phase diagram. Lateral rates of lipid diffusion were determined by (1)H MAS NMR with pulsed field gradients. At the onset of the phase transition near 25 degrees C apparent diffusion rates became diffusion time dependent, indicating that lipid movement is obstructed by the formation of gel-phase domains. A percolation threshold at which diffusion of fluid-phase lipid becomes confined to micrometer-size domains was observed when approximately 40% of total lipid had entered the gel phase. The results indicate that common phosphatidylethanolamines may trigger domain formation in membranes within a physiologically relevant temperature range. This novel NMR approach may aid the study of lipid rafts.  相似文献   

6.
(1)H nuclear magnetic resonance spectroscopy (NMR) resonances from lipids in tumours are associated with tumour grade and treatment response. The origin of these NMR signals is mainly considered to be cytoplasmic lipid droplets (LDs). Techniques exist for isolating LDs but little is known about their composition and its relationship to NMR signals. In this work, density-gradient ultracentrifugation was performed on homogenised human cancer cells to isolate LDs. (1)H NMR was performed on whole cells, isolated LDs and their extracts. Heteronuclear single quantum coherence spectroscopy (HSQC) and liquid chromatography mass spectroscopy (LC-MS) were performed on lipid extracts of LDs. Staining and microscopy were used to characterize isolated LDs. An excellent agreement in chemical shift and relative signal intensity was observed between lipid resonances in cells and isolated LD spectra supporting that NMR-visible lipids originate primarily from LDs. Isolated LDs showed high concentrations of unsaturated lipids, a oleic-to-linoleic acid ratio greater than two and a cholesteryl ester (ChE)-to-cholesterol (Ch) ratio close to unity. These ratios were several-fold greater than respective ratios in whole cells, demonstrating isolation is important to characterize LD composition. LDs contain a specific group of lipid species that are likely to contribute to the (1)H NMR spectrum of cells.  相似文献   

7.
The 31P nuclear magnetic resonance (NMR) spectra of benzene solutions of hydrated dipalmitoyl lecithin (DPL) inverted micelles, with and without incorporated paramagnetic lanthanide ions, have been recorded. Individual resonances for micelles containing none, one, and two ions can be resolved and observed in the presence of one another. The relative intensities of these peaks yield some information on the state of aggregation of lipid inverted micelles prepared by ultrasonic irradiation. The relative intensities and chemical shifts of resonances of unsonicated mixtures of preformed micelles containing different numbers of ions per micelle indicate that some kind of equilibration occurs. The data are consistent with a selective fusion of multi-ion micelles with ion-free micelles. The NMR spectra place constraints on the lifetimes of metal ions and lipid and water molecules within a micelle before transfer to another.  相似文献   

8.
Biliary cholesterol/phospholipid vesicles play an important role in the pathogenesis of gallstone disease. A prerequisite for the study of the lipid composition and stability of these vesicles is a reliable method to quantify the amount of vesicular lipid. In the present report we show that NMR can be used to determine the distribution of biliary lecithin between the micellar and vesicular phases. The relatively large size of the vesicles leads to such a broadening of the lipid resonances that they are no longer visible in high resolution 1H-NMR spectra. Since micelles are much smaller, lipid present in the micellar phase does give rise to sharp peaks in 1H-NMR spectra. Micellar lecithin can easily be quantified in these spectra. The resonances of cholesterol are masked by the closely related bile acid that is present in a much higher concentration. By determining the difference between chemically and NMR estimated lecithin, the distribution of this phospholipid between the micellar phase and vesicular phase can be assessed. We have compared the results of NMR with gel permeation and density gradient ultracentrifugation. Using standard fractionation conditions, both gel permeation and density gradient ultracentrifugation lead to an underestimation of vesicular lecithin, the difference being minor at relatively high total lipid concentrations (10 g/dl) but large in diluted model bile. We conclude that 1H-NMR can be used to determine the distribution of lecithin in model bile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
NMR data on lipid hydroperoxides is scarce. In this study, hydroperoxides were produced from methyl 9-cis,11-trans-octadecadienoate and from methyl 10-trans,12-cis-octadecadienoate by autoxidation in the presence of 20% of alpha-tocopherol. Ten different hydroperoxides were isolated from the autoxidation mixtures of the two conjugated linoleic acid (CLA) methyl esters by SPE and HPLC. The assignment of the 1H and 13C NMR spectra of these hydroperoxides was accomplished by 2D NMR experiments and by spectral simulations. Substitution of a hydroperoxyl group at the allylic position in CLA methyl esters induced a 53.93 ppm downfield shift on the hydroperoxyl-bearing carbon resonance. The effects on the olefinic alpha, beta, gamma, and delta carbon resonances were -3.45, +4.96, -1.22, and +4.42 ppm, respectively. Furthermore, the solvent effects of deuterochloroform, deuteroacetone, and deuterobenzene on the 13C resonances of the hydroperoxides suggest that deuterochloroform is the appropriate solvent for 13C NMR studies on mixtures of lipid hydroperoxides.  相似文献   

10.
A model membrane system composed of egg sphingomyelin (SM), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol was studied with static and magic angle spinning (31)P NMR spectroscopy. This model membrane system is of significant biological relevance since it is known to form lipid rafts. (31)P NMR under magic angle spinning conditions resolves the SM and DOPC headgroup resonances allowing for extraction of the (31)P NMR parameters for the individual lipid components. The isotropic chemical shift, chemical shift anisotropy, and asymmetry parameter can be extracted from the spinning side band manifold of the individual components that form liquid-ordered and liquid-disordered domains. The magnitude of the (31)P chemical shift anisotropy and the line width is used to determine headgroup mobility and monitor the gel-to-gel and gel-to-liquid crystalline phase transitions of SM as a function of temperature in these mixtures. Spin-spin relaxation measurements are in agreement with the line width results, reflecting mobility differences and some heterogeneities. It will be shown that the presence of DOPC and/or cholesterol greatly impacts the headgroup mobility of SM both above and below the liquid crystalline phase transition temperature, whereas DOPC displays only minor variations in these lipid mixtures.  相似文献   

11.
Uniformly (13)C-labeled long-chain fatty acids were used to probe ligand binding to rat liver fatty acid-binding protein (LFABP), an atypical member of the fatty acid-binding protein (FABP) family that binds more than one molecule of long-chain fatty acid, accommodates a variety of diverse ligands, and exhibits diffusion-mediated lipid transport to membranes. Two sets of (1)H-(13)C resonances were found in a titration series of NMR spectra for oleate-LFABP complexes, indicating that two molecules of the fatty acid are situated in the protein cavity. However, no distinct resonances were observed for the excess fatty acid in solution, suggesting that at least one ligand undergoes rapid exchange with oleate in the bulk solution. An exchange rate of 54 +/- 6 s(-1) between the two sets of resonances was measured directly using (13)C z,z-exchange spectroscopy. In light of these NMR measurements, possible molecular mechanisms for the ligand-exchange process are evaluated and implications for the anomalous fatty acid transport mechanism of LFABP are discussed.  相似文献   

12.
A highly purified monophosphoryl lipid A, TLC-3 fraction obtained from the lipopolysaccharides of the heptoseless mutant Salmonella typhimurium G30/C21 was converted to the dimethyl pentatrimethylsilyl derivative and analyzed by proton NMR spectroscopy at 400 MHz. Substantial downfield shifts of the resonances for protons at the 3- and 3'-carbons of the glucosamine disaccharide to 5.06 and 5.15 ppm, respectively, occurred from the normal range of 3.5-4.1 ppm, indicating that these two positions on the sugar rings were acylated. Significant downfield shift of the resonances for protons at the 4- and 6'-carbons did not occur, indicating the absence of acyl groups at these two positions. Since positive ion fast atom bombardment mass spectrometry previously established the presence of hydroxymyristoyl and myristoxymyristoyl esters at the reducing end and distal subunits, respectively, these acyl groups must be attached to the oxygen of the corresponding 3- and 3'-carbons of lipid A. With these results, we can now describe the complete structure of the monophosphoryl lipid A, TLC-3 from S. typhimurium.  相似文献   

13.
Cell membrane rearrangements coincident with apoptosis may contribute to the increase in the ratio of methylene (CH(2) at 1.3 ppm) to methyl (CH(3) at 0.9 ppm) resonance signal intensity as observed by proton nuclear magnetic resonance ((1)H NMR). We studied CH(2) and CH(3) resonances in cultured cell lines treated with etoposide and fludarabine or bioflavonoid quercetin. Etoposide treatment (10 microM, 18 h) resulted in 3.3 fold increase of the CH(2)/CH(3) signal intensity ratio and 6.4 fold decrease in choline signal of MT4 cells. Incubation of Namalwa cells with fludarabine (3 microM, 72 h) increased the CH(2)/CH(3) signal intensity ratio by 2.4 fold and choline resonance intensity was unchanged. Quercetin treatment (30 microM, 1.5 month) increased CH(2)/CH(3) ratio by 2.1 fold. Necrotic cell death upon ethanol (20%) or DMSO (30%) treatment did not change the CH(2)/CH(3) signal intensity ratio. (1)H NMR-based study of mobile lipid domains is sensitive for detection of early engagement into apoptosis.  相似文献   

14.
Surface-exposed regions of membrane-bound myelin basic protein--the major extrinsic membrane protein of central nervous system myelin--have been implicated as possible antigenic sites in diseased myelin. With the goal of determining the extent and nature of these regions, we have prepared basic protein modified with 13CH3-enriched acetyl groups at 7 of its 13 lysine residues. The resulting protein was placed in a membrane environment and studied by NMR spectroscopy to determine the location and rates of molecular motion of the labeled side chains with respect to lipid bilayers of the membrane. When 13C NMR spectra were obtained of the acetylated protein bound to multilamellar vesicles prepared from dimyristoylphosphatidic acid in the gel state (T = 33 degrees C), conditions under which reduced motion in the lipid bilayer broadens methylene and methyl 13C resonances of the membrane beyond detection (i.e. greater than 75-100 Hz), line widths of membrane-bound protein were measured to be 7.8 Hz, an increase of 4 Hz versus free protein. A reduction of 25-30% in integrated intensity observed in protein acetyl resonances upon membrane interaction was shown to be attributable to a population of protein-aggregated liposomes whose resonances were similarly too broad to be observed. Thus, the epsilon-acetyllysyl probes distributed throughout the protein do not penetrate the dimyristoylphosphatidic acid bilayer, but must reside in the interstitial aqueous spaces at or between membrane surfaces. These findings suggest an overall surface accessibility of membrane-bound myelin basic protein and are therefore incompatible with a model for the protein involving membrane-embedded loops or regions of functional significance.  相似文献   

15.
A Lapidot  C S Irving 《Biochemistry》1979,18(4):704-714
The proton-decoupled 9.12 MHz 15N NMR spectra of 15N-labeled Bacillus subtilis, Bacillus licheniformis, Staphylococcus auresu, Streptococcus faecalis, and Micrococcus lysodeikticus intact cells, isolated cells walls, and cell wall digests have been examined. The general characteristics of Gram-positive bacteria 15N NMR spectra and described and spectral assignments are provided, which allow in vivo 15N NMR to be applied to a wide range of problems in bacterial cell wall research. The qualitative similarity of the intact cell and cell wall spectra found in each bacteria allowed the 15 N resonances observed in the proton broad-band noise-decoupled 15N NMR spectra of intact cells to be assigned to cell wall components. Each of the five Gram-positive bacteria displayed a unique set of cell wall 15N resonances, which reflected variations in the primary structure of peptidoglycans and the amounts of teichoic acid and teichuronic acid in the cell wall, as well as the dynamic properties of the cell wall polymers. Spectral assignments of cell wall 15 N resonances assigned to teichoic D-Ala residues, teichuronic acid and acetamido groups, and peptidoglycan acetamido, amide, peptide, and free amino groups have been made on the basis of specific isotopic labeling and dilution experiments, comparison of chemical shifts to literature values, determination of pH titration shifts, cell wall fractionation experiments, and comparative analysis of the cell wall lysozyme digest spectra in terms of the known primary sequences of peptide chains. All the peptidoglycan 15N peptide resonances observed in the intact cells and isolated cell walls could be accounted for by residues in the bridge or crossbar regions of the peptide chains, which indicated that only the cross-linking groups had a high degree of motional freedom. Thermal- and pH-induced conformational changes around the cross-linking D-Ala residues were detected in the B. licheniformis cell wall lysozyme digest products. Comparison of the proton broad-band noise-decoupled and gated decoupled intact cell and cell wall 15N spectra indicated that broad-band proton decoupling resulted in nulling of cytoplasmic resonances and enhancement of the cell wall resonances by the 15N [1H5 nuclear Overhauser effect.  相似文献   

16.
D-Penicillamine(2,5)-enkephalin (DPDPE) is a potent opioid peptide that exhibits a high selectivity for the delta-opiate receptors. This zwitterionic peptide has been shown, by pulsed-field gradient 1H NMR diffusion studies, to have significant affinity for a zwitterionic phospholipid bilayer. The bilayer lipid is in the form of micelles composed of dihexanoylphosphatidylcholine (DHPC) and dimyristoylphosphatidylcholine (DMPC) mixtures, where the DMPC forms the bilayer structure. At high lipid concentration (25% w/w) these micelles orient in the magnetic field of an NMR spectrometer. The resulting 1H-13C dipolar couplings and chemical shift changes in the natural abundance 13C resonances for the Tyr and Phe aromatic rings were used to characterize the orientations in the bilayer micelles of these two key pharmacophores.  相似文献   

17.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

18.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

19.
Membrane fusion and inverted phases   总被引:11,自引:0,他引:11  
We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates.  相似文献   

20.
Rhomboids comprise a family of intramembrane serine proteases that catalyze the cleavage of transmembrane segments within the lipid membrane to achieve a wide range of biological functions. A subset of bacterial rhomboids possesses an N-terminal cytosolic domain that appears to enhance proteolytic activity via an unknown mechanism. Structural analysis of a full-length rhomboid would provide new insights into this mechanism, an objective that solution NMR has the potential to realize. For this purpose we purified the rhomboid from Pseudomonas aeruginosa in a range of membrane-mimetic media, evaluated its functional status in vitro and investigated the NMR spectroscopic properties of these samples. In general, NMR signals could only be observed from the cytosolic domain, and only in detergents that did not support rhomboid activity. In contrast, media that supported rhomboid function did not show these resonances, suggesting an association between the cytosolic domain and the protein-detergent complex. Investigations into the ability of the isolated cytosolic domain to bind detergent micelles revealed a denaturing interaction, whereas no interaction occurred with micelles that supported rhomboid activity. The cytosolic domain also did not show any tendency to interact with lipid bilayers found in small bicelles or vesicles made from Escherichia coli phospholipid extracts. Based on these data we propose that the cytosolic domain does not interact with the lipid membrane, but instead enhances rhomboid activity through interactions with some other part of the rhomboid, such as the catalytic core domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号