共查询到20条相似文献,搜索用时 21 毫秒
1.
By using computer-based homology searches of the Arabidopsis genome, we identified the gene for ACH2, a putative acyl-CoA thioesterase. With the exception of a unique 129-amino acid N-terminal extension, the ACH2 protein is 17-36% identical to members of a family of acyl-CoA thioesterases that are found in both prokaryotes and eukaryotes. The eukaryotic homologs of ACH2 are peroxisomal acyl-CoA thioesterases that are up-regulated during times of increased fatty acid oxidation, suggesting potential roles in peroxisomal beta-oxidation. We investigated ACH2 to determine whether it has a similar role in the plant cell. Like its eukaryotic homologs, ACH2 carries a putative type 1 peroxisomal targeting sequence (-SKL(COOH)), and maintains all the catalytic residues typical of this family of acyl-CoA thioesterases. Analytical ultracentrifugation of recombinant ACH2-6His shows that it associates as a 196-kDa homotetramer in vitro, a result that is significant in light of the cooperative kinetics demonstrated by ACH2-6His in vitro. The cooperative effects are most pronounced with medium chain acyl-CoAs, where the Hill coefficient is 3.8 for lauroyl-CoA, but decrease for long chain acyl-CoAs, where the Hill coefficient is only 1.9 for oleoyl-CoA. ACH2-6His hydrolyzes both medium and long chain fatty acyl-CoAs but has highest activity toward the long chain unsaturated fatty acyl-CoAs. Maximum rates were found with palmitoleoyl-CoA, which is hydrolyzed at 21 micromol/min/mg protein. Additionally, ACH2-6His is insensitive to feedback inhibition by free CoASH levels as high as 100 microm. ACH2 is most highly expressed in mature tissues such as young leaves and flowers rather than in germinating seedlings where beta-oxidation is rapidly proceeding. Taken together, these results suggest that ACH2 activity is not linked to fatty acid oxidation as has been suggested for its eukaryotic homologs, but rather has a unique role in the plant cell. 相似文献
2.
Doan TT Domergue F Fournier AE Vishwanath SJ Rowland O Moreau P Wood CC Carlsson AS Hamberg M Hofvander P 《Biochimica et biophysica acta》2012,1821(9):1244-1255
Primary long-chain fatty alcohols are present in a variety of phyla. In eukaryotes, the production of fatty alcohols is catalyzed by fatty acyl-CoA reductase (FAR) enzymes that convert fatty acyl-CoAs or acyl-ACPs into fatty alcohols. Here, we report on the biochemical properties of a purified plant FAR, Arabidopsis FAR6 (AtFAR6). In vitro assays show that the enzyme preferentially uses 16 carbon acyl-chains as substrates and produces predominantly fatty alcohols. Free fatty acids and fatty aldehyde intermediates can be released from the enzyme, in particular with suboptimal chain lengths and concentrations of the substrates. Both acyl-CoA and acyl-ACP could serve as substrates. Transient expression experiments in Nicotiana tabacum showed that AtFAR6 is a chloroplast localized FAR. In addition, expression of full length AtFAR6 in Nicotiana benthamiana leaves resulted in the production of C16:0-alcohol within this organelle. Finally, a GUS reporter gene fusion with the AtFAR6 promoter showed that the AtFAR6 gene is expressed in various tissues of the plant with a distinct pattern compared to that of other Arabidopsis FARs, suggesting specialized functions in planta. 相似文献
3.
Parcerisa Ivana L. Rosano Germán L. Ceccarelli Eduardo A. 《Plant molecular biology》2020,104(4-5):451-465
Plant Molecular Biology - The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize... 相似文献
4.
5.
Nakamura A Kakimoto T Imamura A Suzuki T Ueguchi C Mizuno T 《Bioscience, biotechnology, and biochemistry》1999,63(9):1627-1630
His-Asp phosphorelays are evolutionary-conserved powerful biological tactics for intracellular signal transduction. Such a phosphorelay is generally made up of "sensor histidine (His)-kinases", "response regulators", and "histidine-containing (HPt) phosphotransmitters". Results from recent intensive studies suggested that in the higher plant Arabidopsis thaliana, His-Asp phosphorelays may be widely used for propagating environmental stimuli, such as phytohormones (e.g., ethylene and cytokinin). In this study, we characterized, in vitro, the putative cytokinin-responsive CKI1 His-kinase, in terms of His-Asp phosphorelays. It was demonstrated for the first time that the receiver domain in this sensor exhibits a strong phosphohistidine phosphatase activity toward some Arabidopsis HPt phosphotransmitters (AHP1 and AHP2), suggesting the functional importance of the receiver domain for a resumed interaction of the sensor His-kinase with other His-Asp phosphorelay components. 相似文献
6.
7.
In several organisms D-cysteine desulfhydrase (D-CDes) activity (EC 4.1.99.4) was measured; this enzyme decomposes D-cysteine into pyruvate, H2S, and NH3. A gene encoding a putative D-CDes protein was identified in Arabidopsis thaliana (L) Heynh. based on high homology to an Escherichia coli protein called YedO that has D-CDes activity. The deduced Arabidopsis protein consists of 401 amino acids and has a molecular mass of 43.9 kDa. It contains a pyridoxal-5'-phosphate binding site. The purified recombinant mature protein had a Km for D-cysteine of 0.25 mm. Only D-cysteine but not L-cysteine was converted by D-CDes to pyruvate, H2S, and NH3. The activity was inhibited by aminooxy acetic acid and hydroxylamine, inhibitors specific for pyridoxal-5'-phosphate dependent proteins, at low micromolar concentrations. The protein did not exhibit 1-aminocyclopropane-1-carboxylate deaminase activity (EC 3.5.99.7) as homologous bacterial proteins. Western blot analysis of isolated organelles and localization studies using fusion constructs with the green fluorescent protein indicated an intracellular localization of the nuclear encoded D-CDes protein in the mitochondria. D-CDes RNA levels increased with proceeding development of Arabidopsis but decreased in senescent plants; D-CDes protein levels remained almost unchanged in the same plants whereas specific D-CDes activity was highest in senescent plants. In plants grown in a 12-h light/12-h dark rhythm D-CDes RNA levels were highest in the dark, whereas protein levels and enzyme activity were lower in the dark period than in the light indicating post-translational regulation. Plants grown under low sulfate concentration showed an accumulation of D-CDes RNA and increased protein levels, the D-CDes activity was almost unchanged. Putative in vivo functions of the Arabidopsisd-CDes protein are discussed. 相似文献
8.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana. 相似文献
9.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4 )2 SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1 . Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+ ). In the presence of MnCl2+ other divalent cations (Mg2+ , Ca2+ , Ba2+ , Hg2+ and Cd2+ ) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M 相似文献
10.
Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties 总被引:1,自引:1,他引:1
Jenny Eberhard Thomas T. Ehrler Petra Epple Georg Felix Hanns-R. Raesecke Nikolaus Amrhein Jürg Schmid 《The Plant journal : for cell and molecular biology》1996,10(5):815-821
The three aromatic amino acids phenylalanine, tyrosine, and tryptophan are synthesized in the plastids of higher plants. There is, however, biochemical evidence that a cytosolic isoform exists of the enzyme catalysing the first step of that branch of the pathway which is specific for the synthesis of phenylalanine and tyrosine, i.e. chorismate mutase (CM). We now report on the isolation of a cDNA clone encoding a cytosolic CM isozyme from Arabidopsis thaliana that was identified by complementing a CM-deficient Escherichia coli strain. The deduced amino acid sequence of this isozyme was 50% identical to that of a previously isolated plastidic CM, and 41% identical to that of yeast CM. The organ-specific expression patterns of the two CM genes were rather similar, but only the gene encoding the plastidic isozyme was elicitor- and pathogen-inducible. The plastidic CM expressed in E. coli was activated by tryptophan and inhibited by phenylalanine and tyrosine, whereas the cytosolic isozyme was insensitive. The existence of a cytosolic CM isozyme implies that either a cytosolic pathway (partial or complete) for the biosynthesis of phenylalanine and tyrosine exists, or that prephenate, originating from chorismate in the cytosol, is utilized for the synthesis of metabolites other than these two aromatic amino acids. 相似文献
11.
12.
A protocol for the isolation of functional thylakoids from Arabidopsis thaliana leaves was developed. The critical factor in obtaining active, coupled and stable preparation is the inclusion of EDTA and
EGTA in the grinding buffer. Preparations were characterized with respect to the whole or partial electron transport chain,
ATP/NADPH, ATP/O2 and PS II/chlorophyll ratios. Sensitivity to a light-chill photoinhibitory treatment was also determined by evaluating the
decrease in both maximal photochemical efficiency (Fv/Fm) and in electron transport rate.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana 总被引:12,自引:0,他引:12
The Rho family of GTPases are in higher eukaryotes divided into 3 major subfamilies; the Rho, Rac and Cdc42 proteins. In plants, however, the Rho family is restricted to one large family of Rac-like proteins. From work with mammalian phagocytes the Rac proteins are known to activate a multicomponent NADPH-dependent oxidase which results in accumulation of H2O2, a process termed oxidative burst. In plants a similar oxidative burst is observed and plays an important role in its defence against pathogen infections, suggesting a similar role for the plant Rac-like proteins. The Rho family of GTPases proteins are also involved in control of cell morphology, and are also thought to mediate signals from cell membrane receptors.In a broad search for members of the Ras superfamily in plants, several new small GTP-binding proteins were found. We report here the identification and molecular cloning of 5 rac-like cDNAs from Arabidopsis thaliana, Arac1–5. The Rac-like proteins deduced from the cDNA sequences all share 80–95% homology, but show considerably more diversity on the nucleotide level, indicating that this is an ancient gene family. Four of the rac genes were found to be expressed in all tissues examined, but one gene, Arac2, was expressed exclusively in the root, hypocotyl and stem. Our results show that the rac gene family in A. thaliana consists of at least 10 different genes. 相似文献
14.
Identification and Biochemical Characterization of Molybdenum Cofactor-binding Proteins from Arabidopsis thaliana 总被引:1,自引:0,他引:1
Tobias Kruse Christian Gehl Mirco Geisler Markus Lehrke Phillip Ringel Stephan Hallier Robert H?nsch Ralf R. Mendel 《The Journal of biological chemistry》2010,285(9):6623-6635
The molybdenum cofactor (Moco) forms part of the catalytic center in all eukaryotic molybdenum enzymes and is synthesized in a highly conserved pathway. Among eukaryotes, very little is known about the processes taking place subsequent to Moco biosynthesis, i.e. Moco transfer, allocation, and insertion into molybdenum enzymes. In the model plant Arabidopsis thaliana, we identified a novel protein family consisting of nine members that after recombinant expression are able to bind Moco with KD values in the low micromolar range and are therefore named Moco-binding proteins (MoBP). For two of the nine proteins atomic structures are available in the Protein Data Bank. Surprisingly, both crystal structures lack electron density for the C terminus, which may indicate a high flexibility of this part of the protein. C-terminal truncated MoBPs showed significantly decreased Moco binding stoichiometries. Experiments where the MoBP C termini were exchanged among MoBPs converted a weak Moco-binding MoBP into a strong binding MoBP, thus indicating that the MoBP C terminus, which is encoded by a separate exon, is involved in Moco binding. MoBPs were able to enhance Moco transfer to apo-nitrate reductase in the Moco-free Neurospora crassa mutant nit-1. Furthermore, we show that the MoBPs are localized in the cytosol and undergo protein-protein contact with both the Moco donor protein Cnx1 and the Moco acceptor protein nitrate reductase under in vivo conditions, thus indicating for the MoBPs a function in Arabidopsis cellular Moco distribution. 相似文献
15.
16.
17.
Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. 总被引:7,自引:1,他引:7 下载免费PDF全文
Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis thaliana (L.) Hynh. (K.M. Léon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10: 655-661), and the biochemical characterization of these mutants is presented here. Protein extracts from aba2 and aba3 plants displayed a greatly reduced ability to convert xanthoxin to ABA relative to the wild type. The next putative intermediate in ABA synthesis, ABA-aldehyde, was efficiently converted to ABA by extracts from aba2 but not by extracts from aba3 plants. This indicates that the aba2 mutant is blocked in the conversion of xanthoxin to ABA-aldehyde and that aba3 is impaired in the conversion of ABA-aldehyde to ABA. Extracts from the aba3 mutant also lacked additional activities that require a molybdenum cofactor (Moco). Nitrate reductase utilizes a Moco but its activity was unaffected in extracts from aba3 plants. Moco hydroxylases in animals require a desulfo moiety of the cofactor. A sulfido ligand can be added to the Moco by treatment with Na2S and dithionite. Treatment of aba3 extracts with Na2S restored ABA-aldehyde oxidase activity. Therefore, the genetic lesion in aba3 appears to be in the introduction of S into the Moco. 相似文献
18.
19.
Dedeyan B Klonowska A Tagger S Tron T Iacazio G Gil G Le Petit J 《Applied and environmental microbiology》2000,66(3):925-929
The basidiomycete Marasmius quercophilus is commonly found during autumn on the decaying litter of the evergreen oak (Quercus ilex L.), a plant characteristic of Mediterranean forest. This white-rot fungus colonizes the leaf surface with rhizomorphs, causing a total bleaching of the leaf. In synthetic liquid media, this white-rot fungus has strong laccase activity. From a three-step chromatographic procedure, we purified a major isoform to homogeneity. The gene encodes a monomeric glycoprotein of approximately 63 kDa, with a 3.6 isoelectric point, that contains 12% carbohydrate. Spectroscopic analysis of the purified enzyme (UV/visible and electron paramagnetic resonance, atomic absorption) confirmed that it belongs to the "blue copper oxidase" family. With syringaldazine as the substrate, the enzyme's pH optimum was 4.5, the optimal temperature was 75 degrees C, and the K(m) was 7.1 microM. The structural gene, lac1, was cloned and sequenced. This gene encodes a 517-amino-acid protein 99% identical to a laccase produced by PM1, an unidentified basidiomycete previously isolated from wastewater from a paper factory in Spain. This similarity may be explained by the ecological distribution of the evergreen oak in Mediterranean forest. 相似文献
20.
Quercetinase (quercetin 2,3-dioxygenase, EC 1.13.11.24) is produced by various filamentous fungi when grown on rutin as the sole carbon and energy source. From a rutin based liquid culture of Penicillium olsonii, we purified a quercetinase with a specific activity of 175U mg(-1). The enzyme is a monomeric glycoprotein of approximately 55 kDa, containing 0.9+/-0.1 copper atoms per protein. Its substrate specificity is restricted to the flavonol family of flavonoids. It is completely inhibited by diethyldithiocarbamate at a concentration of 100 nM and 1H-2-benzyl-3-hydroxy-4-oxoquinolin is a competitive inhibitor with a K(I) of 4 microM. The cDNA poquer1 was cloned and sequenced. It encodes a 365 amino acids long enzyme with a strong sequence identity with the Aspergillus japonicus quercetinase (Q7SIC2). Like the enzyme from A. japonicus, only one of the two cupin domains of the Penicillium olsonii quercetinase is able to bind a metal atom. 相似文献