首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
巴丹吉林沙漠盐湖微生物多样性   总被引:3,自引:1,他引:3  
【目的】研究内蒙古巴丹吉林沙漠碱性盐湖中的原核生物多样性及其与环境因子之间的关系。【方法】利用分子生物学方法构建16S rRNA基因克隆文库,对盐湖中的嗜盐碱微生物进行系统发育分析;利用R语言绘图,对不同盐湖的微生物群落结构进行对比研究。【结果】该区域盐湖含盐量很高,矿化度达165g/L-397 g/L。同时,水体呈强碱性,p H均在10以上。三个湖的盐度和p H值等理化参数有梯度变化,因此微生物多样性和群落结构存在明显差异。整体而言,细菌的多样性大于古菌。样品中含有的主要的细菌门类为γ-变形菌亚门(Gammaproteobacteria)、拟杆菌门(Bacteroidetes)、α-变形菌亚门(Alphaproteobacteria)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobia),古菌则全部属于广古菌门(Euryarchaeota)中的盐杆菌科(Halobacteriaceae)。【结论】盐度是决定细菌群落结构的主要因素,古菌群落结构则由多种环境因素综合影响。一些已知的嗜盐碱菌,如Roseinatronobacter spp.、Halohasta spp.等,可以生活在比其盐度和碱度生长范围更高的极端盐碱环境中。此外,样品中还含有大量未培养的嗜盐碱细菌和古菌,对进一步开发极端盐碱环境中的微生物资源有重要意义。  相似文献   

2.
深海微生物多样性   总被引:1,自引:0,他引:1  
海洋面积约占地球总面积的70%,平均深度3,800 m,海底平均压力38 MPa,海水以下更是包含有物理化学性质迥异的多种地质结构,例如海洋沉积物、洋壳、热液口以及冷泉等.这些性质迥异的地质结构环境造就了丰富的生物多样性,构成了地球上最大的微生物生态系统.深海海水中最主要的微生物类群是α-,γ-变形菌(Alpha-&Gammaproteobacteria),以及海洋古菌群I(Marine Group I).深海沉积物中微生物含量与有机物含量和距离大陆板块的距离相关,以异养微生物为主.深海冷泉区富集了厌氧甲烷氧化古菌ANME和硫酸盐还原菌(Deltaproteobacteria);深海热液区由于具有化学物质的多样性和快速的动态变化而导致形成微生物的高度多样性.洋壳主要由基性、超基性岩构成,含有丰富的矿物,其中不乏参与铁、锰、硫等关键代谢反应的化能自养微生物.同时,由于环境中99%以上的微生物没有已培养的亲缘种,因此对深海微生物的多样性、生理功能特性以及生物地球化学作用的理解和研究仍然存在巨大的挑战.本文将尝试从不同的深海环境分区来综述深海海水、沉积物、洋壳,以及冷泉区和热液口等特殊生态环境中微生物的分布和多样性.  相似文献   

3.
低温细菌与古菌的生物多样性及其冷适应机制   总被引:1,自引:0,他引:1  
低温细菌与古菌广泛分布于地球的低温环境,包括南极、北极及高山地带的冻土、低温土壤和荒漠、冰川、湖泊、海冰,以及深海、冰洞和大气平流层等.栖息在这些低温环境中的细菌与古菌具有丰富的多样性,主要为α,p和γ-Proteobacteria分支、CFB类群分支和革兰氏阳性细菌分支等.由于低温环境中的微生物流动性低,因而是研究微生物地理学理想的生态系统,有助于理解地球微生物的多样性、分布规律乃至形成机制.由于长期生活在冰冻环境中,低温细菌与古菌形成了多种适应低温环境的生理机制,如它们通过细胞膜脂类的组成来调节膜的流动性以维持正常的细胞生理功能;利用相容性溶质、抗冻蛋白、冰核蛋白及抗冰核形成蛋白等实现低温保护作用;产生冷激蛋白、冷适应蛋白和DEAD-box RNA解旋酶保持低温下RNA的正确折叠、蛋白质翻译等重要的生命活动;另外还产生低温酶,提高能量产生和储存效率等以适应低温环境.随着DNA序列分析技术的飞速发展,各类组学方法也用于揭示微生物全局性的冷适应机制.  相似文献   

4.
土壤中温泉古菌研究进展   总被引:1,自引:1,他引:1  
贺纪正  沈菊培  张丽梅 《生态学报》2009,29(9):5047-5055
古菌一直被冠以嗜极端环境的特征,直到最近十几年,由于分子生物学技术的发展,越来越多的证据表明,在许多非极端环境,包括海洋、湖泊和土壤中,分布着一类特殊的古菌-非嗜热泉古菌(non-thermophilic Crenarchaeota).该类古菌不仅分布广泛,而且数量巨大.通过16S rRNA基因序列分析发现,中温泉古菌可能参与到全球碳、氮等生物地球化学循环,预示着其在整个生态系统中起着重要的作用.从古菌分类着手,阐述了中温泉古菌在土壤中的分布和数量特征、影响因素,进而对其在氮和碳循环过程中的潜在作用进行了简要介绍,并提出了今后的研究重点.  相似文献   

5.
奇古菌门是全球海洋中的重要微生物类群,在海洋原核浮游生物中的比例可达20%–40%。作为一类化能无机自养微生物,奇古菌门成员可通过氧化氨获得能量,实现不依赖光照的无机碳固定,在碳、氮等元素的地球化学循环中起关键作用。奇古菌门是海洋中氨氧化反应的主要执行者,其化能合成的有机质是海洋特别是深海环境中微生物的重要能量来源。随着研究的逐步深入,有关该类群生理代谢特性的认知不断被拓展,包括奇古菌门异养代谢的揭示、不具氨氧化能力类群在深海中的发现,以及最新报道的奇古菌门在厌氧条件下介导氧气、氧化亚氮和氮气的产生等。这些研究揭示了奇古菌门参与海洋生物地球化学循环和气候变化调节的新机制,为围绕该类群的深入探究和培养提供了新的思路和方向。本文从群落组成、环境适应、生态功能、进化历史和培养现状等方面综述了近年来有关海洋奇古菌门的新发现和新认识,以期增进对该类群的了解。  相似文献   

6.
微生物生态学研究方法进展   总被引:37,自引:7,他引:37  
微生物培养及显微技术作为鉴定微生物种群的手段有很大的局限性,因为环境中大多数微生物处于“存活但不能培养”的状态。因此.不依赖于微生物培养的生物化学以及分子生物学方法正被广泛地用于微生物生态学研究。主要介绍了荧光技术。基于PCR的分析技术和PLFA等技术在表征微生物多样性研究中的某些进展。  相似文献   

7.
中国微生物物种多样性研究进展   总被引:7,自引:0,他引:7  
郭良栋 《生物多样性》2012,20(5):572-580
微生物是分布最为广泛的生命形式,几乎分布到地球上的所有生境,具有丰富的物种多样性。我国地域辽阔,跨越热带至寒温带,气候条件多样,地理环境与生态系统类型复杂,是世界上生物多样性最丰富的国家之一。我国已开展了大量微生物多样性研究,并证实我国多样的生境蕴藏着丰富的微生物物种多样性。目前我国已报道真核微生物(菌物)约14,700种,其中包括真菌约14,060种、卵菌约300种、黏菌约340种,而真菌中有药用菌473种、食用菌966个分类单元。特别是近年来通过免培养的分子生物学技术发现我国存在丰富的原核微生物多样性。本文概述了传统方法和现代分子生物学技术在我国原核微生物(古菌、细菌)和真核微生物(真菌、卵菌、黏菌)物种多样性研究的最新进展。  相似文献   

8.
高程  郭良栋 《生物多样性》2022,30(10):22429-23168
微生物主要包括细菌、真菌、古菌、病毒等类群, 是地球上出现时间最早、分布最广泛、个体数量最多, 以及物种和基因多样性十分丰富的生物类群。为了适应各种生境, 微生物衍生出腐生、寄生、共生等多样的生存策略, 在生物地球化学循环、生态系统演替与稳定性、环境修复以及人类健康等方面发挥着重要作用。传统的微生物监测方法限制了我们对微生物多样性的认知; 但是, 近年来高通量测序技术和生物信息学的发展极大推动了微生物多样性的研究进展。本文概述了近年来在微生物多样性分布格局与维持、群落构建以及功能属性多样性的最新进展; 总结分析了细菌、古菌、真菌的多样性纬度分布格局及其驱动因子, 选择、扩散、成种、漂变等过程对细菌、古菌、真菌的群落构建的贡献, 以及细菌和真菌的形态、生理生化、生长繁殖、扩散、基因组等功能性状的多样性; 提出了未来微生物多样性研究的重要领域: 环境宏真菌组研究, 微生物多样性与生态系统多功能性的关系研究, 以及微生物互作网络的生态功能研究。  相似文献   

9.
张新旭  李猛 《微生物学报》2020,60(9):1907-1921
古菌作为海洋微生物的重要组分广泛分布于各种海洋环境,在碳、氮、硫等元素的生物地球化学循环和地球生命演化过程中扮演着极为重要的角色。目前古菌主要分为4个超级门(广古菌、TACK古菌、阿斯加德古菌和DPANN古菌),近30个门类。本文综述了广泛分布于近岸或深渊等海洋沉积环境中的四类常见的古菌类群[深古菌门(Bathyarchaeota)、乌斯古菌门(Woesearchaeota)、阿斯加德(Asgard)古菌超门和底栖古菌目(Thermoprofundales,Marine Benthic Group D)]的分布与代谢特征的研究进展,以期为进一步开展这几类古菌方面的研究提供线索和启示。  相似文献   

10.
易悦  周卓  黄艳  承磊 《微生物学报》2023,63(5):1796-1814
产甲烷古菌广泛分布在湿地、水稻田、动物瘤胃、油藏、海洋和热液等缺氧环境,在全球碳素循环、气候变化和清洁能源生产等领域发挥着重要作用,一直是国内外的研究热点。本文简要回顾了我国产甲烷古菌的研究进展,重点阐述了产甲烷古菌的资源与分类、生理生化、分子生物学、生态学功能和应用等方面的研究进展,并展望了产甲烷古菌的未来研究趋势。  相似文献   

11.
AIMS: Application of molecular techniques to ecological studies has unveiled a wide diversity of micro-organisms in natural communities, previously unknown to microbial ecologists. New lineages of Archaea were retrieved from several non-extreme environments, showing that these micro-organisms are present in a large variety of ecosystems. The aim was therefore to assess the presence and diversity of Archaea in the sediments of the river Douro estuary (Portugal), relating the results obtained to ecological data. METHODS AND RESULTS: Total DNA was extracted from sediment samples obtained from an estuary deprived of vegetation, amplified by PCR and the resulting DNA fragments cloned. The archaeal origin of the cloned inserts was checked by Southern blot, dot blot or colony blot hybridization. Recombinant plasmids were further analysed by restriction with AvaII and selected for sequencing. Phylogenetic analyses of 14 sequences revealed the presence of members of the domain Archaea. Most of the sequences could be assigned to the kingdom Crenarchaeota. CONCLUSION: Most of these sequences were closely related to those obtained from non-extreme Crenarchaeota members previously retrieved from diverse ecosystems, such as freshwater and marine environments. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of archaeal 16S rDNA sequences in temperate estuarine sediments emerges as a valuable contribution to the understanding of the complexity of the ecosystem.  相似文献   

12.
Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle?   总被引:3,自引:0,他引:3  
Cultivation-independent molecular surveys show that members of the kingdom Crenarchaeota within the domain Archaea represent a substantial component of microbial communities in aquatic and terrestrial environments. Recently, metagenomic studies have revealed that such Crenarchaeota contain and express genes related to those of bacterial ammonia monooxygenases. Furthermore, a marine chemolithoautotrophic strain was isolated that uses ammonia as a sole energy source. Considering the ubiquity and abundance of Crenarchaeota, these findings considerably challenge the accepted view of the microbial communities involved in global nitrogen cycling. However, the quantitative contribution of Archaea to nitrification in marine and terrestrial environments still remains to be elucidated.  相似文献   

13.
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.  相似文献   

14.
Archaea form one of the three primary groups of extant life and are commonly associated with the extreme environments which many of their members inhabit. Currently, the Archaea are classified into two kingdoms, Crenarchaeota and Euryarchaeota, based on phylogenetic analysis of ribosomal RNA (rRNA) sequences. Molecular techniques allowing the retrieval and analysis of rRNA sequences from diverse environments are increasing our knowledge of archaeal diversity. This report describes the presence of marine Archaea in north-east Atlantic waters. Quantitative estimates indicated that the marine Archaea constitute 8 per cent of the total prokaryotic rRNA in Irish coastal waters. Phylogenetic analysis of the archaeal rRNA gene sequences revealed sufficient genetic diversity within Archaea to indicate that the current two-kingdom classification of Crenarchaeota and Euryarchaeota is restrictive.  相似文献   

15.
Archaea were, until recently, considered to be confined to specialized environments including those at high temperature, high salinity, extremes of pH and ambients that permit methanogenesis. Recently developed molecular methods for studying microbial ecology, which do not necessitate cell culturing, have demonstrated their presence in a wide variety of temperate and cold environments including agricultural and forest soils, fresh water lake sediments, marine picoplankton and deep-sea locations. These discoveries mark the beginning of a new era for investigating the Archaea and in particular their physiological and metabolic properties and their biological roles in complex microbial populations.  相似文献   

16.
Cobalt-rich crusts are important metallic mineral resources with great economic potential, usually distributed on seamounts located in the Pacific Ocean. Microorganisms are believed to play a role in the formation of crusts as well as in metal cycling. To explore the microbial diversity related to cobalt-rich crusts, 16S ribosomal RNA gene clone libraries were constructed from three consecutive sediment layers. In total, 417 bacterial clones were obtained from three bacterial clone libraries, representing 17 distinct phylogenetic groups. Proteobacteria dominated in the bacterial communities, followed by Acidobacteria and Planctomycetes. Compared with high bacterial diversity, archaea showed a remarkably low diversity, with all 137 clones belonging to marine archaeal group I except one novel euryarchaeotal clone. The microbial communities were potentially involved in sulfur, nitrogen and metal cycling in the area of cobalt-rich crusts. Sulfur oxidation and metal oxidation were potentially major sources of energy for this ecosystem. This is the first reported investigation of microbial diversity in sediments associated with cobalt-rich crusts, and it casts fresh light on the microbial ecology of these important ecosystems.  相似文献   

17.
Since the archaeal domain of life was first recognized, it has often been assumed that Archaea are ancient, and harbor primitive traits. In fact, the names of the major archaeal lineages reflect our assumptions regarding the antiquity of their traits. Ancestral state reconstruction and relaxed molecular clock analyses using newly articulated oxygen age constraints show that although the archaeal domain itself is old, tracing back to the Archean eon, many clades and traits within the domain are not ancient or primitive. Indeed many clades and traits, particularly in the Euryarchaeota, were inferred to be Neoproterozoic or Phanerozoic in age. Both Eury- and Crenarchaeota show increasing metabolic and physiological diversity through time. Early archaeal microbial communities were likely limited to sulfur reduction and hydrogenotrophic methanogenesis, and were confined to high-temperature geothermal environments. However, after the appearance of atmospheric oxygen, nodes containing a wide variety of traits (sulfate and thiosulfate reduction, sulfur oxidation, sulfide oxidation, aerobic respiration, nitrate reduction, mesophilic methanogenesis in sedimentary environments) appear, first in environments containing terrestrial Crenarchaeota in the Meso/Neoproterozoic followed by environments containing marine Euryarchaeota in the Neoproterozoic and Phanerozoic. This provides phylogenetic evidence for increasing complexity in the biogeochemical cycling of C, N, and S through geologic time, likely as a consequence of microbial evolution and the gradual oxygenation of various compartments within the biosphere. This work has implications not only for the large-scale evolution of microbial communities and biogeochemical processes, but also for the interpretation of microbial biosignatures in the ancient rock record.  相似文献   

18.
Archaeal habitats--from the extreme to the ordinary   总被引:2,自引:0,他引:2  
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.  相似文献   

19.
Extracellular enzymes produced by heterotrophic microbial communities are major drivers of carbon and nutrient cycling in terrestrial, freshwater, and marine environments. Although carbon and nutrient cycles are coupled on global scales, studies of extracellular enzymes associated with terrestrial, freshwater, and marine microbial communities are not often compared across ecosystems. In part, this disconnect arises because the environmental parameters that control enzyme activities in terrestrial and freshwater systems, such as temperature, pH, and moisture content, have little explanatory power for patterns of enzyme activities in marine systems. Instead, factors such as the functional diversity of microbial communities may explain varying patterns of enzyme activities observed in the ocean to date. In any case, many studies across systems focus on similar issues that highlight the commonalities of microbial community organization. Examples include the effective lifetime of enzymes released into the environment; the extent to which microbial communities coordinate enzyme expression to decompose complex organic substrates; and the influence of microbial community composition on enzyme activities and kinetics. Here we review the often-disparate research foci in terrestrial, freshwater, and marine environments. We consider the extent to which environmental factors may regulate extracellular enzyme activities within each ecosystem, and highlight commonalities and current methodological challenges to identify research questions that may aid in integrating cross-system perspectives in the future.  相似文献   

20.
Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号