共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats pre-administered with alpha-tocopherol (10 mgs/day) for 7 days afforded a significant protection at the tissue level against the lowering of superoxide dismutase and glutathione peroxidase, especially the selenium-dependent glutathione peroxidase. The protective action of alpha-tocopherol in the diethyldithiocarbamate treated rats may be attributed to its antioxidant/free radical scavenging action. It is concluded that selenium-dependent glutathione peroxidase and alpha-tocopherol act in a complementary fashion to block free radical formation. 相似文献
2.
Superoxide dismutase was assayed by a method which takes advantage of the inhibitory action of superoxide dismutase (or tissues which contain superoxide dismutase) on the rate of autooxidation of 6-hydroxydopamine. Incubation of pure superoxide dismutase of homogenates of brain or liver with 10(-3) M diethyldithiocarbamate for 1.5 hours resulted in total loss of superoxide dismutase activity. Inhibition of superoxide dismutase was not reversed by dialysis, but after dialysis, enzymatic activity was restored with CuSO4. When 1.5 g of diethyldithiocarbamate/kg were injected into mice, the superoxide dismutase activity at 3 hours was decreased by 86%, 71%, and 48%, respectively, in whole blood, liver, and brain. A dose of 0.5 g of diethyldithiocarbamate/kg lowered the superoxide dismutase activity by 42% in liver at 3 hours. A study of the time course for inhibiton of superoxide dismutase in liver after 1.5 g of diethyldithiocarbamate/kg, showed a maximum decrease (81%) within 1 hour, with a slow return to 64% of normal by 24 hours. Inhibition of superoxide dismutase in vivo and in vitro was confirmed with other assay systems based on the autooxidation of pyrogallol or epinephrine or on reduction of cytochrome c or intro blue tetrazolium. Treatment of animals with diethyldithiocarbamate may provide a useful experimental model to study the role of superoxide dismutase in various tissues. 相似文献
3.
4.
Glutathione peroxidase activities (GSH-Px) of peritoneal exudate polymorphonuclear neutrophils, pulmonary alveolar macrophages, and peritoneal exudate macrophages of rats depleted of dietary selenium for four to six weeks were markedly lower than the corresponding activities in rats fed the same diet supplemented with 0.5 ppm selenium as sodium selenite. GSH-Px in phagocytes from selenium-supplemented rats adequate or deficient in tocopherol status did not differ significantly. In selenium deficient animals, the residual GSH-Px of polymorphonuclear neutrophils and peritoneal macrophages, but not of alveolar macrophages were slightly higher in tocopherol-deficient rats than in tocopherol-supplemented animals. Superoxide dismutase activities of each cell type were comparable and were not significantly affected by dietary selenium or tocopherol. 相似文献
5.
Antibodies were prepared against glutathione peroxidase, superoxide dismutase, and catalase. Inhibition of the enzyme activity was obtained with anti-Gpx and anti-SOD antibodies but not with anti-CAT antibodies. The antibodies were then injected into human fibroblasts and bovine chondrocytes in culture either under normal conditions or under 1 atm of oxygen. The injected anti-Gpx and anti-SOD antibodies increased the mortality rate of the fibroblasts incubated under 1 atm of oxygen. However, when cells were incubated under normal atmosphere, anti-Gpx antibodies inhibited the division while anti-SOD antibodies increased this capacity. Anti-Gpx antibodies injected into chondrocytes decreased their viability. Injection of control antiserum had no effect. These data stress the primary importance of Gpx as antioxidant under all conditions and the relative efficiency of SOD according to the balance between the radical production and the activity of the other antioxidant systems. 相似文献
6.
《Redox report : communications in free radical research》2013,18(5):181-186
AbstractObjectivesThe objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration.MethodsTwenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up).ResultsIntra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity.DiscussionBoosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases. 相似文献
7.
The enzymatic antioxidant defences of mammalian cells include copper-zinc superoxide dismutase (SOD)(Cu Zn-SOD; EC 1.15.1.1) which catalyses the dismutation of superoxide anions (O2.-) to hydrogen peroxide(H2, O2)and a seleno-dependent glutathione peroxidase (GSH-px) (GSH-px; EC 1.11.1.9) which catalyses the degradation of H2O2 to H2O and O2. The measurement of these enzyme activities is often used as a possible biological index of oxidative stress in various clinical conditions. Complete understanding of such information requires knowledge of the random biological fluctuation of the enzyme activity which occurs in each individual. In the present investigation we examined this normal variability in 12 healthy volunteers (four women and eight men) aged 23–45 years, over 6 months. The intra-individual coefficients of variation (estimated using analysis of variance techniques) were 15% (SOD) and 13% (GSH-px). The analytical goal for imprecision was achieved for both enzymes, i.e. it was less than one half of the measured intra-individual variation. Both enzymes showed marked individuality, indicating that an individual's reference values are more useful than population-based data. The critical difference required for significant changes in serial results is 45% for SOD and 40% for GSH-px. 相似文献
8.
CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in glutathione-deficient human fibroblasts 总被引:1,自引:0,他引:1
The effect of genetically determined glutathione deficiency on the fibroblast content of CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase was investigated. No significant differences between glutathione-deficient and -proficient human fibroblasts were revealed. There was a large variation in the content of the investigated enzymes in fibroblasts grown and analysed on different occasions. Whereas the contents of CuZn superoxide dismutase, catalase and glutathione peroxidase did not deviate much from what has been found in other human cell-lines and tissues, the fibroblasts were found to contain exceptional amounts of Mn superoxide dismutase. 相似文献
9.
10.
N,N-Diethyldithiocarbamate (DDC), a copper-chelating agent, not only inhibits superoxide dismutase activity in the red cell, but also depletes glutathione and promotes the production of methemoglobin, sulfhemoglobin, and small amounts of lipid peroxidation products. DDC reacts with oxyhemoglobin to yield disulfiram, hydrogen peroxide, and methemoglobin. Disulfiram and hydrogen peroxide both convert GSH to GSSG, while DDC reduces methemoglobin to oxyhemoglobin. Although disulfiram also reacts with the hemoglobin sulfhydryl groups, this reaction does not play a role in the conversion of GSH to GSSG. Other hemoglobin derivatives, ferrous, and ferric ions do not catalyze the oxidation of GSH by DDC. These results support the conclusion that DDC reacts with the super-oxo-ferriheme complex of oxyhemoglobin to generate hydrogen peroxide and disulfiram and that the cyclic conversion of oxyhemoglobin to methemoglobin and DDC and disulfiram results in the net oxidation of GSH. Thus, damage to DDC-treated erythrocytes exposed to a putative superoxide-generating toxin, such as 1,4-naphthoquinone-2-sulfonate, may actually be due to diminished GSH concentration and hemoglobin oxidation rather than to superoxide radicals. Glucose added to the incubation medium of DDC-treated erythrocytes fully prevented glutathione depletion but not the oxidation of oxyhemoglobin to methemoglobin. Several other copper-chelating agents either failed to inhibit the activity of purified superoxide dismutase or when incubated with erythrocytes produced more extensive GSH depletion and hemoglobin oxidation than DDC. It is concluded that the interpretation of results with erythrocytes exposed to copper-chelating agents must consider their effects on GSH and hemoglobin as well as on superoxide dismutase inhibition. Moreover, one must be mindful of the interference by DDC in the analysis of GSH with 5,5'-dithiobis-(2-nitrobenzoic acid) in the absence of sufficient quantities of metaphosphoric acid to destroy DDC and that contamination of DDC with trace quantities of disulfiram may be a significant problem. 相似文献
11.
Yan F Yang WK Li XY Lin TT Lun YN Lin F Lv SW Yan GL Liu JQ Shen JC Mu Y Luo GM 《Biochimica et biophysica acta》2008,1780(6):869-872
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger. 相似文献
12.
Coisolation of glutathione peroxidase, catalase and superoxide dismutase from human erythrocytes 总被引:1,自引:0,他引:1
Glutathione peroxidase (GSH-Px; glutathione: hydrogen peroxide oxidoreductase; EC 1.11.1.9), catalase (H2O2: H2O2 oxidoreductase; EC 1.11.1.6) and superoxide dismutase (superoxide: superoxide oxidoreductase; EC 1.15.1.1) were coisolated from human erythrocyte lysate by chromatography on DEAE-cellulose. Glutathione peroxidase was separated from superoxide dismutase and catalase by thiol-disulfide exchange chromatography and then purified to approximately 90% homogeneity by gel permeation chromatography and dye-ligand affinity chromatography. Catalase and superoxide dismutase were separated from each other and purified further by gel permeation chromatography. Catalase was then purified to approximately 90% homogeneity by ammonium sulfate precipitation and superoxide dismutase was purified to apparent homogeneity by hydrophobic interaction chromatography. The results for glutathione peroxidase represent an improvement of approximately 10-fold in yield and 3-fold in specific activity compared with the established method for the purification of this enzyme. The yields for superoxide dismutase and catalase were high (45 mg and 232 mg, respectively, from 820 ml of washed packed cells), and the specific activities of both enzymes were comparable to values found in the literature. 相似文献
13.
Twenty-four weanling male Wistar rats were divided into four groups fed diets containing adequate or deficient levels of selenium
(0.5 ppm [+ Se] or <0.02 ppm [−Se] and protein (15% [+Pro] or 5% [−Pro]), but adequate levels of all other nutrients for 4
wk to determine the effects of Se deficiency and protein deficiency on tissue Se and glutathione peroxidase (GSHPx) activity
in rats. Plasma, heart, liver, and kidney Se and GSHPx were significantly lower in Se-deficient groups in relation to Se-sufficient
groups. In Se-deficient groups, Se and GSHPx were significantly higher in −Se−Pro rats in heart, liver, and kidney. Data analysis
showed that there were significant interaction effects between dietary Se and protein on Se and GSHPx of rats. It is assumed
that under the condition of Se deficiency. a low level of protein may decrease Se and GSHPx utilization, increase GSHPx synthesis,
and result in Se redistribution. This could account for high levels of Se and GSHPx in the −Se−Pro rats compared to −Se+Pro
rats. 相似文献
14.
Mršić-Pelčić J Pilipović K Pelčić G Vitezić D Zupan G 《Cell biochemistry and function》2012,30(7):597-603
Reactive oxygen species are important cause of tissue injury during cerebral ischemia and reperfusion (I/R). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) are intracellular enzymes responsible for endogenous antioxidant defense of tissues affected by I/R. The aim of this study was to examine temporal and regional changes of SOD and GSH-Px activities in animals exposed to transient focal cerebral ischemia. Male Wistar Hannover rats were subjected to the right middle cerebral artery occlusion for 2?h. The animals were sacrificed immediately, 0·5, 1, 2, 3, 6, 24, 48, 72 or 168?h after ischemic procedure. SOD and GSH-Px activities were determined spectrophotometrically in the hippocampus and parietal cortex, both unilaterally and contralaterally to the occlusion. Sham-operated animals were used as the control group. Our results indicated that transient focal cerebral ischemia causes significant changes in SOD activities in the hippocampus and parietal cortex such as in GSH-Px activities in the parietal cortex, unilaterally and contralaterally to the lesion in rats during different reperfusion periods. Statistically significant activation of GSH-Px was registered neither in the right nor in the left hippocampus of ischemic animals. Copyright ? 2012 John Wiley & Sons, Ltd. 相似文献
15.
16.
A supramolecular bifunctional artificial enzyme with superoxide dismutase and glutathione peroxidase activities 总被引:1,自引:0,他引:1
Shuangjiang Yu 《Bioorganic chemistry》2010,38(4):159-827
For constructing a bifunctional antioxidative enzyme with both superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, a supramolecular artificial enzyme was successfully constructed by the self-assembly of the Mn(III)meso-tetra[1-(1-adamantyl methyl ketone)-4-pyridyl] porphyrin (MnTPyP-M-Ad) and cyclodextrin-based telluronic acid (2-CD-TeO3H) through host-guest interaction in aqueous solution. The self-assembly of the adamantyl moieties of Mn(III) porphyrin and the β-CD cavities of 2-CD-TeO3H was demonstrated by the NMR spectra. In this supramolecular enzyme model, the Mn(III) porphyrin center acted as an efficient active site of SOD and tellurol moiety endowed GPx activity. The SOD-like activity (IC50) of the new catalyst was found to be 0.116 μM and equals to 2.56% of the activity of the native SOD. Besides this, supramolecular enzyme model also showed a high GPx activity, and a remarkable rate enhancement of 27-fold compared to the well-known GPx mimic ebselen was observed. More importantly, the supramolecular artificial enzyme showed good thermal stability. 相似文献
17.
Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity 总被引:18,自引:0,他引:18
C R Wheeler J A Salzman N M Elsayed S T Omaye D W Korte 《Analytical biochemistry》1990,184(2):193-199
Automated assays for catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase are presented. The assay for catalase is based on the peroxidatic activity of the enzyme. The glutathione peroxidase and reductase assays measure the consumption of NADPH following the reduction of t-butyl hydroperoxide and oxidized glutathione, respectively. The assay for superoxide dismutase is based on the reduction of cytochrome c. All assays utilize the Cobas FARA clinical automated analyzer and provide considerable time savings over the manual assays. 相似文献
18.
Fei Yan Wen-kui Yang Xin-yang Li Ting-ting Lin Yan-ni Lun Feng Lin Shao-wu Lv Gang-lin Yan Jun-qiu Liu Jia-cong Shen Ying Mu Gui-min Luo 《Biochimica et Biophysica Acta (BBA)/General Subjects》2008
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger. 相似文献
19.
Diethyldithiocarbamate (DDC) has been suggested to have both radiosensitizing (due to superoxide dismutase (SOD) inhibition) and radioprotective properties. We have studied the activity of SOD up to 24 h after intratumoral administration of 50, 100, 150, and 300 mg/kg DDC in 3-methylcholanthrene-induced tumors in BALB/c mice. Maximal inhibition of SOD (8% of control) was obtained 1 h after administration of 100 mg/kg DDC. Tumor response to DDC and X irradiation was assessed using a tumor growth-delay assay, after 11 Gy 100-kVp X rays given up to 24 h after DDC administration. Radiation-induced tumor growth delay (7.11 +/- 1.76 days) was enhanced only when tumors were irradiated 2-4 h after 50 mg/kg DDC. When higher doses of DDC were used, tumor cure was noted when DDC was injected 1-6 h before irradiation. We suggest our findings are consistent with radiosensitization being due to SOD inhibition, but that if insufficient time is allowed between DDC injection and irradiation, the sensitization is masked by a radioprotective effect. We believe that further investigations as to the therapeutic potential of DDC in human patients with cancer are warranted. 相似文献
20.
Inactivation of glutathione peroxidase by superoxide radical 总被引:28,自引:0,他引:28
The selenium-containing glutathione peroxidase, when in its active reduced form, was inactivated during exposure to the xanthine oxidase reaction. Superoxide dismutase completely prevented this inactivation, whereas catalase, hydroxyl radical scavengers, or chelators did not, indicating that O2 was the responsible agent. Conversion of GSH peroxidase to its oxidized form, by exposure to hydroperoxides, rendered it insensitive toward O2. The oxidized enzyme regained susceptibility toward inactivation by O2 when reduced with GSH. The inactivation by O2 could be reversed by GSH; however, sequential exposure to O2 and then hydroperoxides caused irreversible inactivation. Reactivity toward CN- has been used as a measure of the oxidized form of GSH peroxidase, whereas reactivity toward iodoacetate has been taken as an indicator of the reduced form. By these criteria both O2 and hydroperoxides convert the reduced form to oxidized forms. A mechanism involving oxidation of the selenocysteine residue at the active site has been proposed to account for these observations. 相似文献