首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various yeasts have been investigated for their ability to grow on N-acetylglucosamine as the sole carbon source and only those which are associated with the disease, candidiasis, gave positive results. The yeasts unable to grow on N-acetylglucosamine lacked the capacity to transport the aminosugar across the cell membrane. In pathogenic yeasts, two systems of different affinity for substrate were found to operate in the uptake of N-acetylglucosamine. In glucose-grown cells a constitutive, low affinity uptake system was present, but upon addition of inducer, a specific high affinity uptake system was synthesized. Experiments with the inhibitors of macromolecule synthesis suggested that the synthesis of RNA and protein is necessary for induction whereas the synthesis of DNA is not. In glucose-grown Candida albicans cells which are devoid of N-acetylglucosamine enters into the cells as phosphorylated form using a constitutive uptake system. Uranyl acetate (0.01 mM) which binds to cell membrane-associated polyphosphates, inhibited completely the inducible uptake of N-acetylglucosamine. Labelling experiments, designed to determine the temporal sequence of appearance of N-acetylglucosamine in intracellular free sugar and sugar-phosphate pools, indicated that N-acetylglucosamine first appeared in the cells as pohosphorylated form. Similar results were obtained with Saccharomyces phosphorylated form. Similar results were obtained with Saccharomyces cerevisiae 3059 and some other yeasts which are devoid of N-acetylglucosamine kinase in both uninduced and induced conditions. These results are consistent with the model of van Steveninck that involves phosphorylation during transpost. Furthermore, inhibitors of energy metabolism (arsenate, azide and cyanide), proton conductor (m-chlorocarbonylcyanide phenylhydrazine) and dibenzyl diammonium ion (membrane permeable cation) inhibited the inducible N-acetylglucosamine uptake in C. albicans.  相似文献   

2.
Evidence is presented for the presence of multiple peptide permeases in the eucaryotic organism Candida albicans. Instrumental in these studies were the peptides L-alanyl-L-2-thiophenylglycine (Ala-alpha-TPG) and L-alanyl-L-2-thiophenylglycyl-L-alanine (Ala-alpha-TPG-Ala), which contain thiophenol attached to the alpha-carbon of glycine. Subsequent to transport into the fungal cell, enzymatic hydrolysis of these peptides resulted in the release of free thiophenol, which was quantified by using Ellman reagent. Thiophenol release was shown to be directly correlated to peptide transport and hydrolysis, with transport being the rate-limiting step in intact cells. These peptides, whose uptake showed Michaelis-Menten kinetics, have been used to determine peptide uptake in C. albicans. In addition, we found that the intracellular peptidases can readily be assayed in permeabilized cells and that bestatin, an aminopeptidase inhibitor, inhibits all detectable peptidase activity. C. albicans 124 was able to transport and hydrolyze both Ala-alpha-TPG and Ala-alpha-TPG-Ala, whereas the mutant (124NIK5) was able to transport only the tripeptide. The intracellular peptidases of this mutant were unaffected. In wild-type C. albicans 124, oligopeptides were able to compete with uptake of Ala-alpha-TPG-Ala to a far greater extent than with that of Ala-alpha-TPG; dipeptides inhibited uptake of both Ala-alpha-TPG and Ala-alpha-TPG-Ala. These results provide complementary evidence for the existence of distinct transport systems.  相似文献   

3.
Stimulation of cells of the macrophage lineage is a crucial step in the sensing of yeasts by the immune system. Glycans present in both Candida albicans and Saccharomyces cerevisiae cell walls have been shown to act as ligands for different receptors leading to different stimulating pathways, some of which need receptor co-involvement. However, among these ligand-receptor couples, none has been shown to discriminate the pathogenic yeast C. albicans. We explored the role of galectin-3, which binds C. albicans beta-1,2 mannosides. These glycans are specifically and prominently expressed at the surface of C. albicans but not on S. cerevisiae. Using a mouse cell line and galectin-3-deleted cells from knockout mice, we demonstrated a specific enhancement of the cellular response to C. albicans compared with S. cerevisiae, which depended on galectin-3 expression. However, galectin-3 was not required for recognition and endocytosis of yeasts. In contrast, using PMA-induced differentiated THP-1, we observed that the presence of TLR2 was required for efficient uptake and endocytosis of both C. albicans and S. cerevisiae. TLR2 and galectin-3, which are expressed at the level of phagosomes containing C. albicans, were shown to be associated in differentiated macrophages after incubation with this sole species. These data suggest that macrophages differently sense C. albicans and S. cerevisiae through a mechanism involving TLR2 and galectin-3, which probably associate for binding of ligands expressing beta-1,2 mannosides specific to the C. albicans cell wall surface.  相似文献   

4.
Ricin enters the cells by receptor-mediated endocytosis, followed by translocation across the membranes of intracellular organelles. A trans-Golgi retention peptide signal YQRL was fused to the C-terminus of ricin A chain (RTA) by polymerase chain reaction. The recombinant RTA and RTA-YQRL were expressed in Escherichia coli using plasmid pKK223.3 under the control of a tac promoter. The recombinant proteins were purified by affinity chromatography on a Blue-Sepharose 6B column. The cytotoxicities of RTA and the fusion toxin RTA-YQRL were measured by the MTT assay in HeLa, SKOV-3, and WISH cells following fluid-phase endocytosis. The rRTA-YQRL was 2-, 10-, and 40-fold more cytotoxic than rRTA itself in the three cell lines, respectively. The results indicate that addition of a TGN retention signal YQRL to the C-terminus of RTA can markedly increase its cytotoxicity, suggesting TGN may play an important role in the intracellular routing and translocation of RTA.  相似文献   

5.
Li F  Palecek SP 《Eukaryotic cell》2003,2(6):1266-1273
  相似文献   

6.
Histatin 5 (Hst 5) is a salivary gland-secreted cationic peptide with potent fungicidal activity against Candida albicans. Hst 5 kills fungal cells following intracellular translocation, although its selective transport mechanism is unknown. C. albicans cells grown in the presence of polyamines were resistant to Hst 5 due to reduced intracellular uptake, suggesting that this cationic peptide may enter candidal cells through native yeast polyamine transporters. Based upon homology to known Saccharomyces cerevisiae polyamine permeases, we identified six C. albicans Dur polyamine transporter family members and propose a new nomenclature. Gene deletion mutants were constructed for C. albicans polyamine transporters Dur3, Dur31, Dur33, Dur34, and were tested for Hst 5 sensitivity and uptake of spermidine. We found spermidine uptake and Hst 5 mediated killing were decreased significantly in Δdur3, Δdur31, and Δdur3/Δdur31 strains; whereas a DUR3 overexpression strain increased Hst 5 sensitivity and higher spermidine uptake. Treatment of cells with a spermidine synthase inhibitor increased spermidine uptake and Hst 5 killing, whereas protonophores and cold treatment reduced spermidine uptake. Inhibition assays showed that Hst 5 is a competitive analog of spermidine for uptake into C. albicans cells, and that Hst 5 Ki values were increased by 80-fold in Δdur3/Δdur31 cells. Thus, Dur3p and Dur31p are preferential spermidine transporters used by Hst 5 for its entry into candidal cells. Understanding of polyamine transporter-mediated internalization of Hst 5 provides new insights into the uptake mechanism for C. albicans toxicity, and further suggests design for targeted fungal therapeutic agents.  相似文献   

7.
Jang WS  Kim HK  Lee KY  Kim SA  Han YS  Lee IH 《FEBS letters》2006,580(5):1490-1496
Halocidin is an antimicrobial peptide isolated from the hemocytes of the tunicate. Among the several known synthetic halocidin analogues, di-K19Hc has been previously confirmed to have the most profound antibacterial activity against antibiotic-resistant bacteria. This peptide has been considered to be an effective candidate for the development of a new type of antibiotic. In this study, we have assessed the antifungal activity of di-K19Hc, against a panel of fungi including several strains of Aspergillus and Candida. As a result, we determined that the MICs of di-K19Hc against six Candida albicans and two Aspergillus species were below 4 and 16 microg/ml, respectively, thereby indicating that di-K19Hc may be appropriate for the treatment of several fungal diseases. We also conducted an investigation into di-K19Hc's mode of action against Candida albicans. Our colony count assay showed that di-K19Hc killed C. albicans within 30s. Di-K19Hc bound to the surface of C. albicans via a specific interaction with beta-1,3-glucan, which is one of fungal cell wall components. Di-K19Hc also induced the formation of ion channels within the membrane of C. albicans, and eventually observed cell death, which was confirmed via measurements of the K+ released from C. albicans cells which had been treated with di-K19Hc, as well as by monitoring of the uptake of propidium iodide into the C. albicans cells. This membrane-attacking quality of di-K19Hc was also visualized via confocal laser and scanning electron microscopy.  相似文献   

8.
The A chain of the plant toxin ricin (RTA) is an N-glycosidase that inhibits protein synthesis by removing a specific adenine from the 28S rRNA. RTA also induces ribotoxic stress, which activates stress-induced cell signaling cascades and apoptosis. However, the mechanistic relationship between depurination, protein synthesis inhibition and apoptosis remains an open question. We previously identified two RTA mutants that suggested partial independence of these processes in a yeast model. The goals of this study were to establish an endogenous RTA expression system in mammalian cells and utilize RTA mutants to examine the relationship between depurination, protein synthesis inhibition, cell signaling and apoptosis in mammalian cells. The non-transformed epithelial cell line MAC-T was transiently transfected with plasmid vectors encoding precursor (pre) or mature forms of wild-type (WT) RTA or mutants. PreRTA was glycosylated indicating that the native signal peptide targeted RTA to the ER in mammalian cells. Mature RTA was not glycosylated and thus served as a control to detect changes in catalytic activity. Both pre- and mature WT RTA induced ribosome depurination, protein synthesis inhibition, activation of cell signaling and apoptosis. Analysis of RTA mutants showed for the first time that depurination can be reduced by 40% in mammalian cells with minimal effects on inhibition of protein synthesis, activation of cell signaling and apoptosis. We further show that protein synthesis inhibition by RTA correlates more linearly with apoptosis than ribosome depurination.  相似文献   

9.
The antifungal activity and mechanism of HP (2-20), a peptide derived from the N-terminus sequence of Helicobacter pylori Ribosomal Protein L1 were investigated. HP (2--20) displayed a strong antifungal activity against various fungi, and the antifungal activity was inhibited by Ca(2+) and Mg(2+) ions. In order to investigate the antifungal mechanism(s) of HP (2-20), fluorescence activated flow cytometry was performed. As determined by propidium iodide staining, Candida albicans treated with HP (2-20) showed a higher fluorescence intensity than untreated cells and was similar to melittin-treated cells. The effect on fungal cell membranes was examined by investigating the change in membrane dynamics of C. albicans using 1,6-diphenyl-1,3,5-hexatriene as a membrane probe and by testing the membrane disrupting activity using liposome (PC/PS; 3:1, w/w) and by treating protoplasts of C. albicans with the peptide. The action of peptide against fungal cell membrane was further examined by the potassium-release test, and HP (2-20) was able to increase the amount of K(+) released from the cells. The result suggests that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membrane via pore formation or directly interacts with the lipid bilayers in a salt-dependent manner.  相似文献   

10.
In this study we demonstrate that a disarmed version of the cytotoxin ricin can deliver exogenous CD8(+) T cell epitopes into the MHC class I-restricted pathway by a TAP-independent, signal peptidase-dependent pathway. Defined viral peptide epitopes genetically fused to the N terminus of an attenuated ricin A subunit (RTA) that was reassociated with its partner B subunit were able to reach the early secretory pathway of sensitive cells, including TAP-deficient cells. Successful processing and presentation by MHC class I proteins was not dependent on proteasome activity or on recycling of MHC class I proteins, but rather on a functional secretory pathway. Our results demonstrated a role for signal peptidase in the generation of peptide epitopes associated at the amino terminus of RTA. We showed, first, that potential signal peptide cleavage sites located toward the N terminus of RTA can be posttranslationally cleaved by signal peptidase and, second, that mutation of one of these sites led to a loss of peptide presentation. These results identify a novel MHC class I presentation pathway that exploits the ability of toxins to reach the lumen of the endoplasmic reticulum by retrograde transport, and suggest a role for endoplasmic reticulum signal peptidase in the processing and presentation of MHC class I peptides. Because TAP-negative cells can be sensitized for CTL killing following retrograde transport of toxin-linked peptides, application of these results has direct implications for the development of novel vaccination strategies.  相似文献   

11.
Adherence of yeasts to other microorganisms and epithelial cell surfaces is important in their colonization. Comparative studies based on the coaggregation of Candida dubliniensis versus Candida albicans with Fusobacterium nucleatum and other oral bacteria suggested differences in the surfaces of these yeasts. Transmission electron microscopy was used to test the hypothesis that there are morphologic variations in the cell surface of these two species. C. dubliniensis type strain CD36 and C. albicans ATCC 18804 were grown on Sabouraud's dextrose agar at various growth temperatures. In some experiments suspensions of yeast cells were treated with dithiothreitol. Fixation for transmission electron microscopy was accomplished using dimethylsulfoxide and alcian blue added to 3% paraformaldehyde and 1% glutaraldahyde in cacodylate buffer. The cell wall of both species was predominantly electron lucent and was visibly differentiated into several layers. A thin electron dense outer layer was seen with clearly visible fibrillar structures, closely associated to the cytoplasmic membrane. The length of the fibrils of the C. albicans cells grown at 37 degrees C was approximately two times greater than those of the cells grown at 25 degrees C. The fibrils of the 37 degrees C-grown cells were thin, distinct and tightly packed whereas those of the 25 degrees C-grown cells appeared blunt, loosely spaced and aggregated. C. dubliniensis demonstrated short, blunt fibrils appearing similar to those of the 25 degrees C-grown C. albicans cells. C. dubliniensis showed no difference in the density, length and arrangement of fibrils between the 25 degrees C and 37 degrees C growth temperatures. The shortest and most aggregated fibrils seen were of the 45 degrees C-grown C. albicans cells. Dithiothreitoltreated 37 degrees C-grown C. albicans cells revealed a distorted and partially destroyed fibrillar layer. In this investigation C. dubliniensis, unlike C. albicans, displayed an outer fibrillar layer that did not vary with variations in growth temperature. In addition, the fibrils on the C. dubliniensis cells were similar to those of the 25 degrees C-grown C. albicans in that they were considerably shorter and less dense than those of the 37 degrees C-grown C. albicans cells. It can be postulated, that C. dubliniensis exhibits constant cell surface characteristics consistent with hydrophobicity and that this property may give this species an ecological advantage. Therefore, C. dubliniensis may compete well in oral environments via enhanced attachment to oral microbes and other surfaces, perhaps even more efficiently than C. albicans.  相似文献   

12.
We have investigated the expression of TLR2 and Dectin-1 in retinal microglia and their involvement in Candida albicans phagocytosis using a cytometric approach. The expression of both receptors has been demonstrated in CD11b(+) retinal cells. Phagocytosis of pHrodo-labelled C. albicans yeasts by microglial CD11b(+) cells of C57BL/6 mice was inhibited both by the Dectin-1 antagonist laminarin and anti-Dectin-1 antibodies, whereas phagocytosis of yeasts by retinal microglia of TLR2 KO mice was unaffected. These data indicate that phagocytosis of C. albicans yeasts by retinal microglia is mediated by Dectin-1, whereas TLR2 does not play a significant role in this process.  相似文献   

13.
The uptake of different cell-penetrating peptides (CPPs) in two yeast species, Saccharomyces cerevisiae and Candida albicans, was studied using fluorescence HPLC-analyses of cell content. Comparison of the ability of penetratin, pVEC and (KFF)(3)K to traverse the yeast cell envelope shows that the cellular uptake of the peptides varies widely. Moreover, the intracellular degradation of the CPPs studied varies from complete stability to complete degradation. We show that intracellular degradation into membrane impermeable products can significantly contribute to the fluorescence signal. pVEC displayed highest internalizing capacity, and considering its stability in both yeast species, it is an attractive candidate for further studies.  相似文献   

14.
15.
Candida albicans surfaces are extremely sensitive to changes in growth conditions. In this study, adhesion to glass of aerated and non-aerated C. albicans ATCC 10261 in the presence and absence of adhering Streptococcus gordonii NCTC 7869 was determined in a parallel plate flow chamber. In addition, the influence of aeration on the yeast cell surface hydrophobicity, surface charge, and elemental cell surface composition was measured. S. gordonii adhering at the glass surface caused a reduction in the initial deposition rate of C. albicans, regardless of aeration. In a stationary end-point, only adhesion of non-aerated C. albicans was suppressed by the adhering S. gordonii. Non-aerated yeasts had a higher O/C elemental surface concentration ratio, indicative of cell surface polysaccharides, than aerated yeasts, at the expense of nitrogen-rich cell surface proteins. Both yeasts were essentially uncharged, but the nitrogen-rich cell surface of aerated yeasts had a slightly higher water contact angle than non-aerated yeasts. Summarizing, this study suggests that highly localized, hydrophobic cell surface proteins on C. albicans are a prerequisite for their interaction with adhering streptococci.  相似文献   

16.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

17.
A soluble mannose binding protein (MBP), obtained from rabbit serum, was found to inhibit phagocytosis of Candida albicans by bone marrow derived, cultured murine macrophages. During in vitro incubation of yeast with lymphocyte-free macrophage populations uptake of the yeast was significantly reduced at MBP concentrations of 5 micrograms/ml. A similar reduction in yeast phagocytosis was produced by dextrose, d-fucose, l-fucose, d-mannose and alpha-methyl-d-mannoside but required saccharide concentrations of 25-50 mg/ml. Inhibition of phagocytosis of the yeast also resulted from pretreatment of either the macrophages or the yeasts with MBP followed by washing. As expected, the addition of mannan to the assay medium blocked the inhibitory effect of MBP for uptake of C. albicans. These findings suggest that both cell bound and soluble mannose receptors may be important modulators of macrophage-Candida interactions.  相似文献   

18.
Extracellular polymeric material (EP) was isolated from culture supernatants of Candida albicans grown on carbon sources (50 mM-glucose, 500 mM-sucrose or 500 mM-galactose) known to promote yeast adhesion to different extents. Galactose-grown yeasts, which are the most adherent, produced more EP than sucrose-grown organisms, particularly after incubation for 5 d, while glucose-grown yeasts (the least adherent) gave the lowest yield. EP produced on all three carbon sources was of similar composition and contained carbohydrate (65 to 82%; mannose with some glucose), protein (7%), phosphorus (0.5%) and glucosamine (1.5%). Serological studies indicated that these EP preparations were immunologically identical but that galactose-grown yeasts had more antigenic determinants than sucrose-grown organisms while glucose-grown yeasts had the fewest determinants. Antigenic differences were apparent between EP preparations of some strains of C. albicans. Pretreatment of acrylic strips with EP to form a polymeric coating promoted yeast adhesion to the acrylic surface, but similar pretreatment of buccal epithelial cells with EP inhibited subsequent yeast adhesion. These results indicate that EP originates from the cell surface of C. albicans and that it contains the surface component(s), probably mannoprotein in nature, responsible for yeast adhesion.  相似文献   

19.
Phospholipase A and lysophospholipase activities were measured in the culture fluid and in the blastospores of Candida albicans. When phospholipase activity was measured in six yeasts (four strains of C. albicans and a single strain each of Candida parapsilosis and Saccharomyces cerevisiae) a correlation was found between this activity and two potential parameters of pathogenicity. The C. albicans isolates which adhered most strongly to buccal epithelial cells and were most pathogenic in mice had the highest phospholipase activities. Non-pathogenic yeasts, including C. albicans isolates which did not adhere and did not kill mice, had lower phospholipase activities.  相似文献   

20.
Intestinal epithelial cells (IEC) are important in initiation and regulation of immune responses against numerous foreign substances including food, microorganisms and their metabolites in the intestine. Since the responses of IEC against yeasts have not yet been well understood, we investigated the effects of Candida albicans, Saccharomyces cerevisiae, and their cell wall components on interleukin-8 (IL-8) secretion by the IEC-like Caco-2 cells. Live cells of both yeast species stimulated Caco-2 cells to produce IL-8 only in the presence of butyric acid, which is a metabolite produced by intestinal bacteria. S. cerevisiae zymosan and glucan also enhanced IL-8 secretion. Treatment of Caco-2 cells with butyric acid increased the expression of mRNAs coding for Toll-like receptor 1 (TLR1), TLR6 and dectin-1, which recognize zymosan. C. albicans induced more IL-8 secretion and also decreased transepithelial electrical resistance more rapidly than S. cerevisiae. These results suggest that both yeasts in the intestine stimulate the host's mucosal immune systems by interacting with IEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号