首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study deals with molecular nature and peculiarities of functioning of two main protective systems of larvae Lucilia sericata--the antimicrobial compounds of hemolymph and of the excretion released by feeding larvae into environmental. There are identified a number of inducible antibacterial peptides including defensins (3844, 4062, and 4117 Da), P-peptide (3043 Da), and four new polypeptides (3235, 3702, 3746, and 3768 Da) In hemolymph of the larvae submitted to bacterial infestation, by the chromatomasspectrometry methods. The excretion of larvae Lucilia sericata contains peptides analogous or identical to hemolymph antibacterial peptides (diptericins: 8882 Da and 9025 Da), high molecular compounds of peptide nature (6466 Da, 6633 Da, 5772 Da, 8631 Da, etc.) differing from the known hemolymph components and low molecular compounds (130-700 Da). Spectrum of excretion bactericidal activity includes various groups of bacterial including the most actual pathogen from medical point of view--the meticillin-resistant Staphylococcus aureus, unlike the hemolymph that does not have antistaphylococcal activity. The excretion components suppressing growth and development of this staphylococcus are represented by substances of the low molecular nature (from 160 to 1020 Da). The performed studies characterize the strategies used by "surgical maggots" for protection from pathogens and for suppression of microbial competitors and allow better understanding of molecular mechanisms of larval therapy of purulent infectious diseases. These studies in perspective can serve the basis for creation of the principally new drugs for struggle with usual and antibiotics-resistant bacterial infections.  相似文献   

2.
The present study deals with molecular nature and peculiarities of the functioning of two main protective systems of larvae Lucilia sericata—the antimicrobial compounds of haemolymph and exosecretion released by feeding larvae into environment. In the haemolymph of larvae undergone to bacterial infestation, the chromato-masspectrometry methods identified a set of inducible antibacterial peptides including defensins (3844, 4062, and 4117 Da), P-peptide (3043 Da), and four new polypeptides (3235, 3702, 3746, and 3768 Da). The exosecretion of Lucilia sericata maggots contains the peptides analogous or identical to the haemolymph antimicrobial peptides (diptericins: 8882 Da and 9025 Da), high molecular compounds of the peptide nature (6466 Da, 6633 Da, 5772 Da, 8631 Da, etc.) differing from the known haemolymph components, and the low molecular compounds (130–700 Da). The spectrum of exosecretion bactericidal activity includes the representatives of various groups of bacteria including pathogen the most actual from the medical point of view-the methicillin-resistant Staphylococcus aureus that does not have anti-staphylococcal activity in contrast to haemolymph. The exosecretion components suppressing growth and development of this staphylococcus represent the substances of low molecular mass (from 160 to 1020 Da). The performed studies characterize the strategies used by “surgical maggots” for protection from pathogens and for suppression of microbial competitors, and allow better understanding of molecular mechanisms of larval therapy of purulent infectious diseases. These studies in perspective can serve the basis for creation of the principally new drugs for struggle with usual and antibiotics-resistant bacterial infections.  相似文献   

3.
We have explored antimicrobial compounds in oyster hemolymph and purified four active peptides with molecular masses of 4464, 3158, 655 and 636 Da. While no exploitable structural elements were obtained for the former three, a partial amino acid sequence (X-P-P-X-X-I-V) was obtained for the latter, named Cg-636. Due to both its low MM and the presence of exotic amino acid residue (X), we suspected a bacterial origin and tracked cultivable hemolymph-resident bacteria of oyster for their antimicrobial abilities. Supernatants of 224 hemolymph resident bacteria coming from 60 oysters were screened against 10 target bacteria including aquaculture pathogens. Around 2% (5 strains) revealed antimicrobial activities. They belong to Pseudoalteromonas and Vibrio genera. Two closely related strains named hCg-6 and hCg-42 have been shown to produce Bacteriocin-Like Inhibitory Substances (BLIS) even in oyster hemolymph. We report herein first BLIS-producing bacteria isolated from bivalve hemolymph. These results strongly suggest that hemolymph resident bacteria may prevent pathogen establishment and pave the way for considering a role of resident bacteria into bivalve defense.  相似文献   

4.
Lucifensin, a novel larval defensin, is one of the antibacterial agents of medicinal maggots involved in maggot therapy. The goal of this study was to examine lucifensin expression in various larval tissues during Lucilia sericata development and in maggots exposed to a variety of infectious environments in vitro. In situ hybridisation revealed lucifensin expression in the salivary glands of all larval stages. Expression was occasionally detected in a few cells of the fat body and in the grease coupler of the salivary glands. Expression of lucifensin in the salivary glands was initiated 5–6 h after hatching from the egg. Maximum expression was reached about 24 h after hatching, remained strong during the second and third instars and declined at the end of the third instar, before the wandering stage. Expression of lucifensin was also investigated in maggots after oral ingestion of certain pathogens regularly found in infected chronic wounds. No differences were detected in the salivary glands after stimulation by wound bacterial isolates. However, lucifensin expression was strongly stimulated in the fat body by the presence of Staphylococcus aureus and Pseudomonas aeruginosa. Our data suggest that certain infectious environments increase lucifensin expression only in the fat body, whereas its production and antimicrobial activity in excretion/secretion products are not affected.  相似文献   

5.
Antimicrobial peptides accumulated in the hemolymph in response to infection are a key element of insect innate immunity. The involvement of the fat body and hemocytes in the antimicrobial peptide synthesis is widely acknowledged, although release of the peptides present in the hemolymph from the immune cells was not directly verified so far. Here, we studied the presence of antimicrobial peptides in the culture medium of fat body cells and hemocytes isolated from the blue blowfly Calliphora vicina using complex of liquid chromatography, mass spectrometry, and antimicrobial activity assays. Both fat body and hemocytes are shown to synthesize and release to culture medium defensin, cecropin, diptericins, and proline-rich peptides. The spectra of peptide antibiotics released by the fat body and hemocytes partially overlap. Thus, the results suggest that insect fat body and blood cells are capable of releasing mature antimicrobial peptides to the hemolymph. It is notable that the data obtained demonstrate dramatic difference in the functioning of insect antimicrobial peptides and their mammalian counterparts localized into blood cells’ phagosomes where they exert their antibacterial activity.  相似文献   

6.
Research to quantify the potency of larval excretion/secretion from Lucilia sericata using liquid culture assays has produced contradictory results. In this study, viable counting was used to investigate the effectiveness of excretion/secretion against three marker bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli) and the effects of varying growing conditions in assays. Results demonstrate that factors such as number of larvae, species of bacteria and addition of nutrient influence its antibacterial potency. Therefore a standardised method should be employed for liquid culture assays when investigating the antibacterial activity of larval excretion/secretion from L. sericata.  相似文献   

7.
Paenibacillus polymyxa strain JSa-9, a soil isolate that displayed antibacterial and antifungal activities in vitro, had been found to produce two types of antimicrobial substances. The two compounds were extracted from the fermentation broth of JSa-9 using ethyl acetate and subsequently purified by high performance liquid chromatography. By means of liquid chromatography-mass spectrometry and tandem mass spectrometry analysis, one of two antagonistic compounds was determined as di-n-butyl phthalate. And another was characterized as a mixture of related peptides of molecular masses of 883, 897, 911, 947, and 961 Da, with the most likely structure of them determined to be a cyclic depsipeptide with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety bound to a free amino group. These peptides were therefore members of the LI-F group of cyclic depsipeptides.  相似文献   

8.
9.
10.
When colonizing the digestive tract of mono-associated rats, Ruminococcus gnavus E1 - a bacterium isolated from human faeces - produced a trypsin-dependent anti-Clostridium perfringens substance collectively named Ruminococcin C (RumC). RumC was isolated from the caecal contents of E1-monocontaminated rats and found to consist of two antimicrobial fractions: a single peptide (RumCsp) of 4235 Da, and a mixture of two other peptides (RumCdp) with distinct molecular masses of 4324 Da and 4456 Da. Both RumCsp and RumCdp were as effective as metronidazole in combating C. perfringens and their activity spectra against different pathogens were established. Even if devoid of synergistic activity, the combination of RumCsp and RumCdp was observed to be much more resistant to acidic pH and high temperature than each fraction tested individually. N-terminal sequence analysis showed that the primary structures of these three peptides shared a high degree of homology, but were clearly distinct from previously reported amino acid sequences. Amino acid composition of the three RumC peptides did not highlight the presence of any Lanthionine residue. However, Edman degradation could not run beyond the 11th amino acid residue. Five genes encoding putative pre-RumC-like peptides were identified in the genome of strain E1, confirming that RumC was a bacteriocin. This is the first time that a bacteriocin produced in vivo by a human commensal bacterium was purified and characterized.  相似文献   

11.
Fish skin mucus has recently been recognized to be a potential source of antimicrobial peptides, which provides the first line of defense against invading pathogens. This study reports the purification and characterization of a novel linear antimicrobial peptide, pelteobagrin, from the skin mucus of yellow catfish (Pelteobagrus fulvidraco, Richardson). Pelteobagrin is 20 amino acids in length (GKLNLFLSRLEILKLFVGAL) and shows no clear homology with any known bioactive peptides. MALDI-TOF MS indicated the molecular mass of the purified peptide was 2244.4 Da, which is in good agreement with pelteobagrin's predicted molecular weight of 2244.8 Da. Pelteobagrin exhibited antibacterial activity against Gram-positive and Gram-negative bacteria as well as fungi, and the activity was relatively salt-insensitive as it was not affected by NaCl concentrations of up to 137 mM. Moreover, pelteobagrin displayed no hemolytic activity to rabbit red blood cells. Transmission electron microscopy suggested that pelteobagrin might kill bacteria via acting on both the cell wall and the cytoplasmic membrane of bacteria. These results suggest that pelteobagrin might be involved in the innate defense system in yellow catfish.  相似文献   

12.
Hemolymph of Rapana venosa snails is a complex mixture of biochemically and pharmacologically active components such as peptides and proteins. Antimicrobial peptides are gaining attention as antimicrobial alternatives to chemical food preservatives and commonly used antibiotics. Therefore, for the first time we have explored the isolation, identification and characterisation of 11 novel antimicrobial peptides produced by the hemolymph of molluscs. The isolated peptides from the hemolymph applying ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC) have molecular weights between 3000 and 9500 Da, determined by mass spectrometric analysis. The N-terminal sequences of the peptides identified by Edman degradation matched no peptides in the MASCOT search database, indicating novel proline-rich peptides. UV spectra revealed that these substances possessed the characteristics of protein peptides with acidic isoelectric points. However, no Cotton effects were observed between 190 and 280 nm by circular dichroism spectroscopy. Four of the Pro-rich peptides also showed strong antimicrobial activities against tested microorganisms including Gram-positive and Gram-negative bacteria.  相似文献   

13.
研究通过自然感染方法诱导的丝光绿蝇蛆虫的抗菌活性.用大肠埃希菌感染无菌蛆虫,用灭菌的PBS作为对照.提取血淋巴,以金黄色葡萄球菌、绿脓杆菌作指示菌,采用平板法作抑菌试验,检验蛆虫血淋巴的抗菌活性.结果发现:感染的蛆虫比无菌蛆虫有较好的抗菌能力;大肠埃希菌预处理12 h后能够诱导蛆虫的抗菌活性,在24h达到峰值然后下降;血淋巴对金黄色葡萄球菌的抗菌活性高于绿脓杆菌.研究表明,通过自然感染的方法可以诱导丝光绿蝇幼虫抗菌活性.  相似文献   

14.
In Drosophila melanogaster, seven distinct families of antimicrobial peptides with different structures and specificities are synthesized by the fat body and released into the hemolymph during the immune response. Using microscale high performance liquid chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and Edman degradation, we have isolated and characterized from immune-challenged Drosophila two novel induced molecules, under the control of the Imd pathway, that correspond to post-translationally modified antimicrobial peptides or peptide fragments. The first molecule is a doubly glycosylated form of drosocin, an O-glycosylated peptide that kills Gram-negative organisms. The second molecule represents a truncated form of the pro-domain of the Drosophila attacin C carrying two post-translational modifications and has significant structural similarities to proline-rich antibacterial peptides including drosocin. We have synthesized this peptide and found that it is active against Gram-negative bacteria. Furthermore, this activity is potentiated when the peptide is used in combination with the Drosophila antimicrobial peptide cecropin A. The synergistic action observed between these two molecules suggests that the truncated post-translationally modified pro-domain of attacin C by itself may play an important role in the antimicrobial defense of Drosophila.  相似文献   

15.
Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides.  相似文献   

16.
This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents.  相似文献   

17.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.  相似文献   

18.
Novel antimicrobial peptides (AMP), designated Fa-AMP1 and Fa-AMP2, were purified from the seeds of buckwheat (Fagopyrum esculentum Moench.) by gel filtration on Sephadex G75, ion-exchange HPLC on SP COSMOGEL, and reverse-phase HPLC. They were basic peptides having isoelectric points of over 10. Fa-AMP1 and Fa-AMP2 had molecular masses of 3,879 Da and 3,906 Da on MALDI-TOF MS analysis, and their extinction coefficients in 1% aqueous solutions at 280 nm were 42.8 and 38.9, respectively. Half of all amino acid residues of Fa-AMP1 and Fa-AMP2 were cysteine and glycine, and they had continuous sequences of cysteine and glycine. The concentrations of peptides required for 50% inhibition (IC50) of the growth of plant pathogenic fungi, and Gram-positive and -negative bacteria were 11 to 36 microg/ml. The structural and antimicrobial characteristics of Fa-AMPs indicated that they are a novel type of antimicrobial peptides belonging to a plant defensin family.  相似文献   

19.
Antimicrobial peptides (AMPs) from cuticular extracts of worker ants of Trichomyrmex criniceps (Mayr, Hymenoptera: Formicidae) were isolated and evaluated for their antimicrobial activity. Eight peptides ranging in mass from 804.42 to 1541.04 Da were characterized using a combination of analytical and bioinformatics approach. All the eight peptides were novel with no similarity to any of the AMPs archived in the Antimicrobial Peptide Database. Two of the eight novel peptides, the smallest and the largest by mass were named Crinicepsin‐1 and Crinicepsin‐2 and were chemically synthesized by solid phase peptide synthesis. The two synthetic peptides had antibacterial and weak hemolytic activity.  相似文献   

20.
Piscidins are linear, amphipathic, antimicrobial peptides (AMPs) with broad, potent, activity spectrum. Piscidins and other members of the piscidin family appear to comprise the most common group of AMPs in teleost fish. All piscidins and related members of the piscidin family described to date are 18–26 amino acids long. We report here the isolation of a novel 5329.25 Da, 44-residue (FFRHLFRGAKAIFRGARQGXRAHKVVSRYRNRDVPETDNNQEEP) antimicrobial peptide from hybrid striped bass (Morone chrysops female x M. saxatilis male). We have named this peptide “piscidin 4” since it has considerable (to > 65%) N-terminal sequence homology to piscidins 1–3 and this distinctive, 10 to 11-residue, N-terminus is characteristic of piscidins. The native peptide has a modified amino acid at position 20 that, based upon mass spectrometry data, is probably a hydroxylated tryptophan. Synthetic piscidin 4 (with an unmodified tryptophan at position 20) has similar antibacterial activity to that of the native peptide. Piscidin 4 demonstrates potent, broad-spectrum, antibacterial activity against a number of fish and human pathogens, including multi-drug resistant bacteria. Its potent antimicrobial activity suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号