首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of recombinant antibodies in mammalian cells is one of key problems in immunobiotechnology. Alternatively, expression of a broad panel of antibodies and of their fragments may be effectively done in yeast cells. We obtained expression strains of the methylotrophic beast Pichia pastoris producing single chain human catalytic antibody A17 (A.17scFv), Fab-fragment (A.17Fab) and full-size light chain (A.17Lch). These antibodies were characterized in terms of functional activity. The capacity to specifically bind and transform organophosphorus compounds has been demonstrated for A.17scFv and A.17Fab. The loss of activity of the antibody light chain when expressed alone indicates that the active site is formed by both heavy and light chains of the antibody. We determined the reversible constant Kd and the first order constant (k2) of the reaction of the covalent modification of A.17scFv and A.17Fab by irreversible inhibitor of the serine proteases p-nitrophenyl 8-methyl-8-azobicyclo[3.2.1]phosphonate (Phosphonate X). Calculated values indicate that activity of the antibodies expressed in yeast is similar to the full-size antibody A17 and single chain antibody A.17 expressed in CHO and E. coli cells respectively.  相似文献   

2.
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.  相似文献   

3.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

4.
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.Key words: cell-free protein synthesis, Fab antibody, aglycosylated antibodies, HER2, trastuzumab  相似文献   

5.
《MABS-AUSTIN》2013,5(2):217-225
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.  相似文献   

6.
High-capacity surfaces can enhance analyte-binding kinetics and be beneficial for rapid immunoassays. Site-specifically immobilized, oriented recombinant single-chain Fv (scFv) and Fab antibody fragments were compared with a conventional, nonoriented monoclonal antibody (Mab) to capture antigen from serum to solid surface in a one-step, two-site thyroid-stimulating hormone (TSH) immunoassay with a 5-min incubation time. The assay used a ready-to-use dry reagent-based concept and time-resolved fluorescent measurement. TSH binding capacities were 3.0-fold (Fab) and at least 4.1-fold (scFv) higher when recombinant antibodies were used instead of Mab. Recombinant antibody fragments also produced faster kinetics (5 vs. 45-min saturation level) than Mab: 21-25% (Mab) versus 72-83% (scFv and Fab). Analytical sensitivities of the 5-min assay were 0.09 mIU/L TSH (Fab), 0.16 mIU/L TSH (scFv), and 0.26 mIU/L TSH (Mab). Between-run variabilities were 4.2-7.9% (Fab), 4.6-17.7% (scFv), and 5.5-7.2% (Mab). The assays correlated well with the AutoDELFIA hTSH (human TSH) Ultra assay (r = 0.99, n = 109). Fab was good in all aspects of immunoassay—capacity, kinetics, sensitivity, and analytical performance. As a homogeneous, stable, and small-sized binding molecule with optimized surface-coating properties as well as reduced risk for interference by heterophilic antibodies, Fab fragment is a promising and realistic immunoreagent for the future.  相似文献   

7.
Catalytic antibodies are a promising model for creating highly specific biocatalysts with predetermined activity. However, in order to realize the directed change or improve their properties, it is necessary to understand the basics of catalysis and the specificity of interactions with substrates. In the present work, a structural and functional study of the Fab fragment of antibody A5 and a comparative analysis of its properties with antibody A17 have been carried out. These antibodies were previously selected for their ability to interact with organophosphorus compounds via covalent catalysis. It has been established that antibody A5 has exceptional specificity for phosphonate X with bimolecular reaction rate constants of 510 ± 20 and 390 ± 20 min–1M–1 for kappa and lambda variants, respectively. 3D-Modeling of antibody A5 structure made it possible to establish that the reaction residue L-Y33 is located on the surface of the active site, in contrast to the A17 antibody, in which the reaction residue L-Y37 is located at the bottom of a deep hydrophobic pocket. To investigate a detailed mechanism of the reaction, A5 antibody mutants with replacements L-R51W and H-F100W were created, which made it possible to perform stopped-flow kinetics. Tryptophan mutants were obtained as Fab fragments in the expression system of the methylotrophic yeast species Pichia pastoris. It has been established that the effectiveness of their interaction with phosphonate X is comparable to the wild-type antibody. Using the data of the stopped-flow kinetics method, significant conformational changes were established in the phosphonate modification process. The reaction was found to proceed using the induced-fit mechanism; the kinetic parameters of the elementary stages of the process have been calculated. The results present the prospects for the further improvement of antibody-based biocatalysts.  相似文献   

8.
Benzoylecgonine is a major metabolite of cocaine. We generated hybridoma cells (C1303) producing anti-benzoylecgonine monoclonal antibody (mAb) with a single-chain variable fragment (scFv) and an antigen-binding domain from the C1303 cells. Genes encoding an scFv antibody and constant region (Fc) were amplified from a cDNA library of C1303 cells using PCR. The two frameworks built for scFv and scFv-Fc consisted of HL [(heavy chain variable region, VH) — linker — (light chain variable region, VL)] and HL-Fc, respectively. A 45 base-pair-long sequence encoding (Gly4-Ser)3 was used as the linker, and the mouse IgG1 constant region sequence (225 amino acids) was used as the Fc domain. These two types of recombinant Abs were determined to be 750 bp in length (which corresponds to a 30 kDa protein) in the HL and 1,432 bp in length (which corresponds to a 65 kDa protein) in the HL-Fc, respectively. The parental Ab and HL-Fc affinities against benzoylecgonine were measured by ELISA and found to be nearly equal to the Ab concentration. We were also able to measure HL affinity using an agarose diffusion assay (Ouchterlony test). The affinity of the recombinant single-chain antibody against benzoylecgonine was sufficiently comparable to that of the parent antibodies to be used for the immunodetection of specific drug compounds or the detoxification of drug abusers by immunotherapy.  相似文献   

9.
Intracellularly expressed antibodies have been designed to bind and inactivate target molecules inside eukaryotic cells. Here we report that an antibody fragment can be used to probe the periplasmic localization of the colicin A N-terminal domain. Colicins form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, they bind to a receptor located on the outer membrane and then are translocated through the envelope. The N-terminal domain of colicins is involved in the translocation step and therefore is thought to interact with proteins of the translocation system. To compete with this system, a single-chain variable fragment (scFv) directed against the N-terminal domain of the colicin A was synthesized and exported into the periplasmic space of E. coli. The periplasmic scFv inhibited the lethal activity of colicin A and had no effect on the lethal activity of other colicins. Moreover, the scFv was able to specifically inactivate hybrid colicins possessing the colicin A N-terminal domain without affecting their receptor binding. Hence, the periplasmic scFv prevents the translocation of colicin A and probably its interaction with import machinery. This indicates that the N-terminal domain of the toxin is accessible in the periplasm. Moreover, we show that production of antibody fragments to interfere with a biological function can be applied to prokaryotic systems.  相似文献   

10.

Background

Hep27 monoclonal (Hep27 Mab) is an antibody against hepatocellular carcinoma. Hep27 Mab itself can inhibit the growth of a hepatocellular carcinoma cell line (HCC-S102). We attempted to produce a single-chain fragment (scFv), a small fragment containing an antigen-binding site of Hep27 Mab, by using DNA-recombinant techniques.

Results

The sequences encoding the variable regions of heavy (VH) and light (VL) chains of a murine Hep27 Mab were linked together by a linker peptide (Gly4Ser)3 and tagged with a hexa-histidine at the C-terminal; the resultant DNA construct was expressed in E. coli as an insoluble protein. The denatured scFv was refolded and purified by immobilized metal ion affinity chromatography (12 mg/l with a molecular weight of 27 kDa). Hep27scFv exhibited a tumoricidal activity against the HCC-S102 cell as its parental antibody (Hep27 Mab).

Conclusion

This scFv may be a potential candidate for a targeting agent in HCC immunodiagnosis or immunotherapy.  相似文献   

11.
Antibodies against CD25 would be novel tools for the diagnosis and treatment of adult T cell leukemia lymphoma (ATLL) and many other immune disorders. In our previous work, we successfully produced the single-chain fragment of a variable antibody against CD25, the Dmab(scFv) antibody, using Pichia pastoris. Here, we describe a novel form of an antibody against CD25, the Dmab(scFv)-Fc antibody, also produced by P. pastoris. To construct the Dmab(scFv)-Fc antibody, the Dmab(scFv) antibody was genetically fused to the Fc fragment of a human IgG1 antibody. A fusion gene encoding Dmab(scFv)-Fc antibody was cloned into the pPIC9K plasmid and expressed at high levels, 60–70 mg/l, by P. pastoris under optimized conditions. The Dmab(scFv)-Fc antibody was similar to the Dmab(scFv) antibody in its binding specificity but different in its molecular form and Fc-mediated effector functions. The Dmab(scFv)-Fc antibody and the Dmab(scFv) antibody both bound to CD25-positive MJ cells but not to CD25-negative K562 cells. The Dmab(scFv)-Fc antibody existed as a dimer whereas the Dmab(scFv) antibody was a monomer because it lacks the Fc fragment. The Dmab(scFv)-Fc antibody enhanced the antibody-dependent cellular cytotoxicity of CD25-positive cancer cells, whereas the Dmab(scFv) antibody was inactive in the antibody-dependent cellular cytotoxicity assays. In addition, compared to the Dmab(scFv) antibody, the Dmab(scFv)-Fc antibody showed stronger immunosuppressive activity in the Con A-stimulated lymphocyte proliferation system and in the mixed lymphocyte reaction system. These results demonstrate that the Dmab(scFv)-Fc antibody produced in P. pastoris is functional, and therefore it might be developed as a novel diagnostic and therapeutic tool for ATLL and other immune disorders.  相似文献   

12.
We have earlier described a haemagglutination-based assay for on-site detection of antibodies to HIV using whole blood. The reagent in this assay comprises of monovalent Fab fragment of an anti-human RBC antibody fused to immunodominant antigens of HIV-1 and HIV-2. In the present work, we describe a rational and systematic method for directed evolution of scFv and Fab antihuman RBC antibody fragments. Based on homology modeling and germline sequence alignments of antibodies, target residues in the anti-RBC MAb B6 sequence were identified for mutagenesis. A combinatorial library of 107 clones was constructed and subjected to selection on whole RBC under competitive binding conditions to identify several phage-displayed B6 scFv clones with improved binding as determined in an agglutination assay. Selected VL and VH sequences were shuffled to generate a second generation phage-displayed Fab library which on panning yielded Fab clones with several fold better binding than wild type. The mutants with better binding also displayed more Fab molecules per phage particle indicating improved in vivo folding which was also confirmed by their increased periplasmic secretion compared to the wild type. The mutant Fab molecules also showed superior characteristics in large scale production by in vitro folding of LC and Fd. The biophysical measurements involving thermal and chemical denaturation and renaturation kinetics clearly showed that two of the mutant Fab molecules possessed significantly improved characteristics as compared to the wild type B6 Fab. Structural modelling revealed that B6 Fab mutants had increased hydrogen bonding resulting in increased stability. Our approach provides a novel and useful strategy to obtain recombinant antibodies with improved characteristics.Key words: phage display, antibody maturation, Fab, antibody folding, scFv, agglutination  相似文献   

13.
Hantaan virus (HTNV) is the type of Hantavirus causing hemorrhagic fever with renal syndrome, for which no specific therapeutics are available so far. Cell type-specific internalizing antibodies can be used to deliver therapeutics intracellularly to target cell and thus, have potential application in anti-HTNV infection. To achieve intracellular delivery of therapeutics, it is necessary to obtain antibodies that demonstrate sufficient cell type-specific binding, internalizing, and desired cellular trafficking. Here, we describe the prokaryotic expression, affinity purification, and functional testing of a single-chain Fv antibody fragment (scFv) against HTNV envelop glycoprotein (GP), an HTNV-specific antigen normally located on the membranes of HTNV-infected cells. This HTNV GP-targeting antibody, scFv3G1, was produced in the cytoplasm of Escherichia coli cells as a soluble protein and was purified by immobilized metal affinity chromatography. The purified scFv possessed a high specific antigen-binding activity to HTNV GP and HTNV-infected Vero E6 cells and could be internalized into HTNV-infected cells probably through the clathrin-dependent endocytosis pathways similar to that observed with transferrin. Our results showed that the E. coli-produced scFv had potential applications in targeted and intracellular delivery of therapeutics against HTNV infections.  相似文献   

14.
White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.  相似文献   

15.
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.  相似文献   

16.
A single-chain Fv (scFv) fragment of anti-idiotype antibody 11-1G10, which recognizes an idiotope of anti-neuraminidase antibody NC41, was constructed by joining VH and VL domains with a (Gly4Ser)3 linker, with a pelB leader sequence, and two C-terminal FLAG tag sequences, and expressed in E. coli (10 mg/L). The 11-1G10 scFv was isolated by affinity chromatography on an anti-FLAG M2 antibody column as a 2:1 mixture of monomer and dimer forms which were separated by Superdex 75 chromatography; monomer (at 100 g/ml) was stable for 7 days at 21°C and 30 days at 4°C, whereas the dimer slowly dissociated to monomer to yield a 2:1 monomer–dimer equilibrium mixture after 30 days at 4°C. The dimer was bivalent, with each combining site binding an NC41 Fab to yield a stable complex of M r 156,000. Binding affinities, determined in solution using a BIAcore biosensor, showed that the affinity for the interaction of 11-1G10 scFv monomer with NC41 scFv monomer was five- to six-fold higher than the interaction of the parent Fab pair. This is the first example of an scFv derived from a monoclonal antibody with a higher affinity than its parent Fab.  相似文献   

17.
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.  相似文献   

18.
We evaluated the concept for protection of plants against virus infection based on the expression of single-chain Fv (scFv) fragments in the apoplasm or cytosol of transgenic plants. Cloned cDNA of a tobacco mosaic virus (TMV)-specific scFv antibody, which binds to intact virions, was integrated into the plant expression vector pSS and used for Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi-nc. Regenerated transgenic tobacco plants were analysed by northern blot, western blot and ELISA to assess expression and functionality of recombinant antibody (rAb) fragments. A significant increase of scFv levels in T1 progeny was obtained for plants secreting apoplastic scFv antibodies but not for scFvs expressed in the cytosol. Bioassays revealed that T1 progeny producing scFvs in different plant cell compartments showed different levels of resistance upon inoculation with TMV. The most dramatic reduction of necrotic local lesion numbers upon virus infection was observed in T1 plants expressing scFv fragments in the cytosol. Infectivity could be reduced by more than 90%, despite the observation that protein expression levels for functional scFv antibodies were very low. Furthermore, upon inactivation of the N-resistance gene at elevated temperature, a significant portion of the T1 progenies inhibited systemic virus spread, indicating that expression of TMV-specific cytosolic scFvs confers virus resistance in these transgenic plants. Moreover, inoculation of protoplasts isolated from transgenic and non-transgenic tobacco plants with TMV-RNA demonstrated that accumulation of virus particles is affected by cytosolic scFv expression.  相似文献   

19.
《MABS-AUSTIN》2013,5(3):470-482
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.  相似文献   

20.
We have developed a technology for rapidly generating novel and fully human antibodies by simply using the antigen DNA. A human single‐chain variable fragment (scFv) antibody library was constructed in a yeast two‐hybrid vector with high complexity. After cloning cDNA encoding the mature sequence of human interleukin‐8 (hIL8) into the yeast two‐hybrid system vector, we have screened the human scFv antibody library and obtained three distinct scFv clones that could specifically bind to hIL8. One clone was chosen for further improvement by a novel affinity maturation process using the error‐prone PCR of the scFv sequence followed by additional rounds of yeast two‐hybrid screening. The scFv antibodies of both primary and affinity‐matured scFv clones were expressed in E. coli. All purified scFvs showed specific binding to hIL8 in reciprocal coimmunoprecipitation and ELISA assays. All scFvs, as well as a fully human IgG antibody converted from one of the scFv clones and expressed in the mammalian cells, were able to effectively inhibit hIL8 in neutrophil chemotaxis assays. The technology described can generate fully human antibodies with high efficiency and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号