共查询到20条相似文献,搜索用时 15 毫秒
1.
N. A. Dyatko F. E. Latyshev A. S. Mel’nikov A. P. Napartovich 《Plasma Physics Reports》2006,32(2):158-169
The initial stage of the positive column formation in a neon glow discharge is investigated both experimentally and theoretically. A decrease in the plasma radiation intensity (the so-called “dark phase”) was observed experimentally over a time period of about 1 ms. A similar dip was also observed in the time dependence of the electric field strength. The measured population of the lower metastable states of Ne was found to have a maximum at the beginning of the dark phase. A relevant theoretical model has been developed and used to perform calculations for the actual experimental conditions. A comparison between the numerical and experimental results shows that the model adequately describes the processes that occur during the formation of the positive column in a neon glow discharge. Experimental and theoretical studies show that the dark-phase effect is related to the excessive amount of metastable Ne atoms at the beginning of a discharge and, accordingly, to the high rates of stepwise ionization and chemionization. 相似文献
2.
N. A. Dyatko Yu. Z. Ionikh A. V. Meshchanov A. P. Napartovich 《Plasma Physics Reports》2005,31(10):871-885
The initial stage of the positive column formation in an argon glow discharge is investigated both experimentally and theoretically. A decrease in the plasma radiation intensity (the so-called “dark phase”) was observed experimentally over a time period of about 1 ms. A similar dip was also observed in the time dependence of the electric field strength. The time evolution of the population of the lowest metastable state of Ar was measured. A relevant theoretical model has been developed and used to perform calculations for the actual experimental conditions. A comparison between the numerical and experimental results shows that the model adequately describes the processes that occur during the formation of the positive column in an argon glow discharge. Experimental and theoretical study shows that the dark-phase effect is related to an excessive amount of metastable Ar atoms at the beginning of a discharge and, consequently, to high rates of stepwise ionization and chemionization. 相似文献
3.
A. I. Shishpanov Yu. Z. Ionikh A. V. Meshchanov N. A. Dyatko 《Plasma Physics Reports》2014,40(6):467-480
Results are presented from experimental studies of breakdown and the initial stage of a discharge in a long tube (with an interelectrode distance of 40 cm and a diameter of 2.8 cm) at a pressure of ~1 Torr and pulse discharge current of ~10 mA. Breakdown was produced by positive voltage pulses with a linearly growing leading edge with a steepness of dU/dt ~ 106–108 V/s. The time interval between pulses was varied from τ = 0.5 ms to 1 s, the pulse duration being 10 ms. The work was aimed at studying the memory effect of the discharge gap, namely, the influence of the previous pulse on the breakdown characteristics of the next one. In the experiments, the breakdown voltage was measured at different values of dU/dt and τ. It was found that the memory effect was absent at τ ~ 1 s. At the same time, an increase in the breakdown voltage with increasing dU/dt was observed. In the range of τ ≈ 50–200 ms, the breakdown voltage also did not depend on τ, but the memory effect took place. The memory effect in this case consisted in that the breakdown voltage decreased with increasing dU/dt, so that, at dU/dt ~ 107 V/s, the breakdown voltage was two times lower than in the case of τ ~ 1 s. For τ ~ 1–10 ms, the memory effect manifested itself in that the breakdown voltage depended on τ: it could either decrease (the “normal” effect) or increase (the “anomalous” effect) with increasing τ. Breakdown of the discharge gap was preceded by the propagation of an ionization wave, except for the case of small τ values in the domain of existence of the anomalous effect. Estimates allowing one to qualitatively explain the experimental results are made. 相似文献
4.
Yu. A. Mankelevich A. F. Pal’ N. A. Popov T. V. Rakhimova A. V. Filippov 《Plasma Physics Reports》2001,27(11):979-989
The current dynamics in a non-self-sustained glow discharge in atmospheric-pressure nitrogen (with a small admixture of oxygen) at cryogenic and room temperatures is studied experimentally and theoretically. For the first time, the theoretical model incorporates the processes of the decomposition of O 2 + ·N2 and NO+·N2 complex ions in collisions with vibrationally excited nitrogen molecules and the associative ionization reactions with the participation of excited nitrogen and oxygen atoms. The computation results agree quite satisfactorily with the experimental data on the current dynamics and the duration of the stable phase of a non-self-sustained discharge for various applied voltages. Even a small (0.01%) oxygen admixture is found to greatly affect the dynamics of the ion composition and the characteristic duration of the stable phase of a non-self-sustained discharge in atmospheric-pressure nitrogen. 相似文献
5.
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles. 相似文献
6.
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge
is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while
the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations,
the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential
is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential
are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function
of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions
of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction
of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux. 相似文献
7.
The initiation and characteristics of a low-pressure glow discharge in air in large-diameter discharge tubes are studied. A deviation from the Paschen law is observed: the breakdown curves U dc(pL) shift toward the higher values of U dc and pL as the interelectrode distance L increases. It is shown that the normal regime of a glow discharge is accompanied by gas ionization in the anode sheath. This takes place only for pL values lying to the right of the inflection point in the breakdown curve. The cathode-sheath characteristics in the normal and abnormal regimes of an air discharge for a duralumin cathode are determined. The axial profiles of the ion density, electron temperature, and plasma potential, as well as the anode voltage drop, are measured at various air pressures. 相似文献
8.
9.
The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture. 相似文献
10.
11.
A. N. Trushkin M. E. Grushin I. V. Kochetov N. I. Trushkin Yu. S. Akishev 《Plasma Physics Reports》2013,39(2):167-182
Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established. 相似文献
12.
Yu. D. Korolev N. V. Landl V. G. Geyman O. B. Frants I. A. Shemyakin V. O. Nekhoroshev 《Plasma Physics Reports》2016,42(8):799-807
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current?voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current. 相似文献
13.
A one-dimensional drift model of the cathode region of a glow discharge with allowance for both electron-impact ionization and charged particle loss is proposed. An exact solution to the model equations is obtained for the case of similar power-law dependences of the ion and electron drift velocities on the electric field strength. It is shown that, even in the drift approximation, a relatively wide transition layer in which the ion-to-electron current ratio approaches a constant value typical of the positive column of a glow discharge should occur between the thin space-charge sheath and the quasineutral plasma, the voltage drop across the space-charge sheath being comparable to that across the transition layer. The calculated parameters of the normal and anomalous glow discharges are in good agreement with available experimental data. 相似文献
14.
A. K. Shuaibov L. L. Shimon I. V. Shevera A. I. Dashchenko 《Plasma Physics Reports》2002,28(12):1060-1064
The spatial, electrical, and optical characteristics of a transverse glow discharge and a volume discharge with a spherical anode and plane cathode in low-pressure Xe/Cl2 mixtures are studied. It is shown that the transverse glow discharge in mixtures with a low chlorine content occupies most of the interelectrode gap and exists in the form of strata. As the total pressure (P≥300 Pa) and the partial chlorine pressure (P(Cl2)≥80 Pa) increase, a solitary plasma domain with a volume of 1–2 cm3 forms in the discharge gap. It acts as a selective source of UV radiation in the XeCl(D-X) 236-nm, Cl2 (D′-A′) 257-nm, and XeCl(B-X) 308-nm bands. In certain Xe/Cl2 mixtures, plasma self-oscillations in the frequency range 1–100 kHz are observed. The current of a low-pressure volume discharge with a spherical anode and plane cathode and the emission from it have both a dc and an ac component. The pressure and composition of the working mixture, as well as the average current of the volume discharge are optimized to attain the maximum emission intensity of the XeCl(D,B-X) bands. Low-pressure volume discharges in xenon/chlorine mixtures can be used as active media in low-pressure large-aperture planar or cylindrical excimer-halogen lamps emitting modulated or repetitive pulsed UV radiation. 相似文献
15.
A normal glow discharge in nitrogen between two infinite plane-parallel electrodes is simulated numerically in three dimensions in the drift-diffusion model. An algorithm is proposed that is based on solving the model equations by a hybrid of the sweep and relaxation methods and that combines a satisfactorily fast rate of convergence with the efficiency of individual iterations. The algorithm developed was used to carry out a three-dimensional simulation of a discharge in nitrogen at the pressures p = 5 and 1 Torr, the source voltage and ballast resistance being 2 kV and 300 kΩ, respectively. It was found that, at the pressure p = 1 Torr, the current density and charged particle densities change to a torioidal distribution in the anode region. 相似文献
16.
The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed. 相似文献
17.
18.
Yu. D. Korolev O. B. Frants V. O. Nekhoroshev A. I. Suslov V. S. Kas’yanov I. A. Shemyakin A. V. Bolotov 《Plasma Physics Reports》2016,42(6):592-600
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented. 相似文献
19.
A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions, Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma parameters across the discharge gap, current-voltage characteristics, and cathode characteristics for an abnormal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also observed in conventional discharges in tubes. 相似文献
20.
Yu. S. Akishev M. E. Grushin I. V. Kochetov A. P. Napartovich M. V. Pan'kin N. I. Trushkin 《Plasma Physics Reports》2000,26(2):157-163
It is commonly accepted that, as the current increases, a diffuse negative corona inevitably goes over to a strongly nonuniform and nonsteady spark discharge. In this paper, a new effect—the transition of a negative corona to a diffuse glow discharge at atmospheric pressure—is studied experimentally and numerically. The evolution of the corona parameters during the transition to the regime of a glow discharge is traced. 相似文献