首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanin AF 《Biofizika》2011,56(5):868-872
Low-molecular dinitrosyl iron complexes with thiol-containing ligands (cysteine or glutathione) were recently demonstrated to be capable of apoptosis modulation. Being in the intact (undecomposed) state, the complexes protect against the apoptosis, and when decomposed, they exhibit the proapoptotic activity. The possibility of the delivery of the complexes by ferromagnetic nanoparticles to carcinogenic tissues is considered using the external magnetic field for nanoparticle accumulation in these tissues.  相似文献   

2.
Dinitrosyl iron complexes (DNIC) with thiol ligands were found to beneficially affect the state of the penile cavernous tissue upon its experimental denervation in rats. Histological and histochemical analysis showed that intracavernous administration of DNIC (twice weekly over six months) almost completely abolished the proliferation of endothelial cells typical of denervated cavernous tissue. On the other hand, this treatment sustained the mitotic activity of smooth myocytes and prevented the appearance of collagenase, a marker of their fibrotic transformation. The DNIC treatment had a pronounced effect on penile erection in neurotomized as well as in intact animals. Introduction of low-molecular DNIC into cavernous tissue was found to cause formation of protein-bound complexes observed by EPR and probably acting as depots of nitric oxide, ensuring steady erection.  相似文献   

3.
The interaction of peroxynitrite with thiolate dinitrosyl iron complexes (DNIC) has been examined and compared with the interaction with H2O2. Peroxynitrite oxidized DNIC containing various thiolate ligands--cysteine, glutathione, and bovine serum albumin. Analysis of the oxidation suggested a two-electron reaction and gave third-order rate constants of (9.3 +/- 0.5).109 M-2.sec-1 for DNIC with BSA, (4.0 +/- 0.3).108 M-2.sec-1 for DNIC with cysteine, and (1. 8 +/- 0.3).107 M-2.sec-1 for DNIC with glutathione at 20 degrees C and pH 7.6. Peroxynitrite was more reactive towards DNIC than towards sulfhydryls. Addition of sodium dithionite after the reaction led to significant restoration of the EPR signal of DNIC with cysteine. The reaction of glutathione DNIC with H2O2 was about 600 times slower than with ONOO- and not reversed by sodium dithionite. Thus peroxynitrite, in contrast to hydrogen peroxide, changes the pool of nitrosocompounds which can be responsible for interconversion, storage, and transportation of nitric oxide in vivo.  相似文献   

4.
A stable hypotensive preparation (Oxacom) based on dinitrosyl iron complexes (DNIC) with glutathione has been developed. The preparation has successfully passed pharmacological trials. Tests on volunteers have shown a high hypotensive activity of the preparation: a single intravenous infusion of its aqueous solution at a dose of 0.2 μmol active substance per kg body wt led to a 20–30% decrease in arterial pressure, which persisted for 15–20 h. Similar experiments on animals demonstrated that aqueous solutions of DNIC with cysteine or glutathione also exert a hypotensive action due to their vasodilatory activity. Besides, these complexes accelerate wound healing and produce a potent erectile effect. There is reason to suppose that DNIC with thiol ligands as NO donors may be cytotoxic for pathogenic mycobacteria Mycobacterium tuberculosis and, after appropriate treatment, inhibit cancer cell proliferation. These complexes can be used as analgesics, for inhibiting the adhesion process, in treating preeclampsia, spermatogenesis pathologies, and in cosmetology for treatment of skin injury.  相似文献   

5.
Vanin AF  Chazov EI 《Biofizika》2011,56(2):304-315
A stable hypotensive preparation (Oxacom) based on dinitrosyl iron complexes (DNIC) with glutathione has been developed. The preparation has successfully passed through pharmacological trials. The tests on volunteers have shown a high hypotensive activity of the preparation: a single intravenous infusion of its aqueous solution at a dose of 0.2 microM per kg of body weight led to a 20-30% decrease in arterial pressure, which persisted for a period of 15-20 h. Similar experiments on the animals demonstrated that aqueous solutions of DNIC with cysteine or glutathione exert also the hypotensive action due to their vasodilatory activity. Besides, these complexes accelerate wound healing and produce a potent erective action. There is reason to suggest that DNIC with thiol-containing ligands as NO donors can produce the cytotoxic action on the pathogenic mycobacteria Mycobacterium tuberculosis and, after respective treatment, inhibit cancer cell proliferation. These complexes can be used as analgetics, for inhibiting the adhesion process, in the therapy of preexplampsia, spermatogenesis pathologies, and in cosmetology for the treatment of skin injury.  相似文献   

6.
The dinitrosyl iron complexes (DNIC) with thiosulphate, cysteine or phosphate were shown to inhibit in vitro (in citrate plasma) the human platelet aggregation induced by ADP, collagen or adrenaline. This effect cannot be explained by the toxic action of DNIC on the platelet membrane, since DNIC-pretreated platelets are capable of aggregating under the action of 10(-8) M/ml of phorbol ester, which is known to cause direct activation of protein kinase C. The antiaggregatory activity of DNIC exceeds that of Na-nitroprusside and seems to be due to nitric oxide capable to activate guanylate cyclase of platelets. Using the EPR method, it was shown that addition of DNIC to platelet-enriched plasma results in a rapid transfer of Fe(NO)2 groups to the coupled RS(-)-groups proteins of plasma and, apparently, of platelet membrane proteins. These protein DNIC seem to be the source of NO which inhibits human platelet aggregation.  相似文献   

7.
Current notions and new experimental data of the authors on physicochemical features of mono- and binuclear dinitrosyl iron complexes (DNIC) with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of DNIC to act as NO molecule and nitrosonium ion donors, are considered. This ability determines the various biological activities of DNIC: inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting platelet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing the necrotic zone in animals with myocardial infarction. Moreover, DNIC are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, and blocking apoptosis development in cell cultures. When decomposed, DNIC can exert a cytotoxic effect that may be used in treatment for infection and malignant pathologies.  相似文献   

8.
A beneficial effect of dinitrosyl iron complexes (DNIC) with thiol-containing ligands on penile cavernus tissue was shown in rats subjected to penile denervation. Histological and histochemical investigations demonstrated that intracavernous injections of dinitrosyl iron complexes (2 times per one week during 6 months) blocked the reinforcement of endothelial cell proliferation in the tissue characteristic of the cavernous tissue when the penile nerve was removed. On the other hand, treatment with dinitrosyl iron complexes led to the preservation of mitotic activity of smooth myocytes and protected against the appearance in these cells of collagenase, an indicator of muscle transformation into fibrous tissue. It was shown that the process of fibrous transformation of myocytes correlates with a decrease in the mitotic activity of fibroblasts in the adventive part of cavernosa. The mitotic activity increased in cavernous tissue in the absence of dinitrosyl iron complexes. The efficiency of long-term action of dinitrosyl iron complexes on the erection in both intact animals and animals subjected to neuroectomy of cavernous tissue nerve was shown. The injection of low-molecular dinitrosyl iron complexes to the cavernous tissue resulted in the formation of protein-bound dinitrosyl iron complexes in the tissue, which were detected by the EPR technique. It is assumed that these dinitrosyl iron complexes function as a depot of nitric oxide, providing long-lasting penis erection.  相似文献   

9.
Exogenous dinitrosyl iron complexes (DNIC) with thiolate ligands as NO and NO+ donors are capable of exerting both regulatory and cytotoxic effects on diverse biological processes similarly to those characteristic of endogenous nitric oxide. Regulatory activity of DNIC (vasodilatory, hypotensive, suppressing thrombosis, increasing erythrocyte elasticity, accelerating skin wound healing, inducing penile erection, etc.) is determined by their capacity of NO and NO+ transfer to biological targets of the latter (heme- and thiol-containing proteins, respectively) due to higher affinity of the proteins for NO and NO+ than that of DNIC. Cytotoxic activity of DNIC is provided by rapid DNIC decomposition under action of iron-chelating compounds, resulting in appearance of NO and NO+ in cells and tissues in high amounts. The latter mechanism is suggested to cause the blocking effect of DNIC as cytotoxic effectors on the development of benign endometrial tumors in rats with experimental endometriosis. It is also proposed that a similar mechanism can operate to cause at least a delay of malignant tumor proliferation under action of DNIC.  相似文献   

10.
The possibility of water-soluble dinitrosyl iron complexes (DNIC) with thiol-containing ligands introduction into lungs and other tissues of mice by free inhalation of little drops (2–3 microns diameter) of the solutions of these complexes was investigated. Little drops of 2–20 mM solutions of the complexes were obtained by using an inhalation apparatus (compressor nebulizer). A cloud of these little drops was then inhaled by animals in a closed chamber. A maximal amount of protein-bound DNICs formed in mouse lungs was 0.6 micromoles per kilogram of tissue weight. The amount of DNIC in lungs, liver and blood decreased to the undetected level within 2–3 hours after inhalation. No cytotoxic effect of DNIC formed in lungs on Mycobacterium tuberculosis was found in mice infected with these mycobacteria.  相似文献   

11.
The antitumor dose-dependent effect of binuclear dinitrosyl iron complexes with glutathione as NO donors on a solid tumor in the mouse, Lewis lung carcinoma, was detected. The complexes being injected at doses of 21, 42, 105 mg/kg daily for 10 days blocked completely the development of the tumor for the first week after tumor cell implantation into animals. After that, the part of tumor cells which remained in intact alive state began to grow at a rate equal to that for control animals. The effect was proposed to be caused via formation of an antinitrosative defense system in the cells as a response to NO attack on cells. It was also hypothesized that this system can be inactivated by higher doses of dinitrosyl iron complexes. Data were obtained which were in line with the hypothesis.  相似文献   

12.
Dimeric dinitrosyl iron complexes (DNIC) with cysteine or glutathione as NO donors accelerated the healing of experimental skin wound in rats, as demonstrated by histological and histochemical examination. After two injections of an aqueous DNIC solution into the wound (total 5 μmol) on days 1 and 2 after surgery, the granulocyte volume in wound tissue on day 4 was 3–4 times greater than in the control. Higher DNIC doses provoked inflammation in the wound. Similar experiments with another NO donor S-nitrosoglutathione in equivalent amounts (10 μmol) adversely affected the wound. Addition of 2.5 μmol glutathione DNIC for 40 min produced EPR-detectable protein-bound DNIC (2.5 nmol) in wound tissue. Under the same conditions, 5 μmol S-nitrosoglutathione produced less than 10 pmol of protein-bound DNIC; an EPR-active nitrosyl hemoglobin complex was mainly formed (1.5–2.0 nmol) in this case. The beneficial effect of DNIC on the wound was suggested to be due to the delivery of NO to its targets without pronounced formation of cytotoxic peroxynitrite in wound tissue. In contrast, peroxynitrite could form upon administration of rapidly decomposed S-nitrosoglutathione, thereby aggravating the wound condition.  相似文献   

13.
Vasorelaxant activity of new stable powder preparations of dinitrosyl iron complexes (DNIC) with thiol-containing ligands was investigated on rat abdominal aorta rings. The preparations preserve their physicochemical characteristics (EPR and optical absorption) if stored for a long time in dry air (at least half-year). Three preparations of DNIC were tested: diamagnetic dimeric DNIC with glutathione (DNIC-GS 1:2) or cysteine (DNIC-cys 1:2) and paramagnetic monomeric DNIC with cysteine (DNIC-cys 1:20). Being dissolved in physiological solution the preparations induced relaxation of vessel similarly to that by earlier described non-stable DNICs which should be stored in liquid nitrogen. The amplitudes and kinetic characteristics of the relaxation were dependent on the incorporated thiolate ligands. Rapid transient relaxation followed by significant tone recovery to stationary level (plateau) was observed for DNIC-cys 1:2. DNIC-cys 1:20 also induced initial rapid relaxation followed by incomplete tone recovery. DNIC-GS 1:2 induced slow developing and long lasting relaxation. NO scavenger, hydroxocobalamin (2x10(-5)M) eliminated the rapid transitory relaxation induced by DNIC-cys 1:20 and did not influence significantly on the plateau level. SOD increased duration of the DNIC-cys 1:2 and DNIC-cys 1:20 induced relaxation. The addition of 5x10(-5)M DNIC-cys 1:2 or DNIC-cys 1:20 induced long lasting vasorelaxation within 20min and more. However the EPR measurements demonstrated full rapid disappearance (within 1-2min) of both type of DNIC-cys in Krebs medium bubbled with carbogen gas. This was not the case for DNIC-GS 1:2. We suggested that the long lasting vasorelaxation observed during the addition of DNICs-cys was induced by S-nitrosocysteine derived from DNICs-cys and stabilized by EDTA in Krebs medium. The suggestion is in line with the fact that strong ferrous chelator bathophenantroline disulfonate (BPDS) which is capable of rapid degradation of DNICs did not abrogate the vasorelaxtion induced by DNIC addition.  相似文献   

14.
Electron paramagnetic resonance and optical spectrophotometric studies have demonstrated that low-molecular dinitrosyl iron complexes (DNICs) with cysteine or glutathione exist in aqueous solutions in the form of paramagnetic mononuclear (М-DNICs) and diamagnetic binuclear complexes (B-DNICs). The latter represent Roussin’s red salt esters and can be prepared by treatment of aqueous solutions of Fe2+ and thiols (рН 7.4) with gaseous nitric oxide (NO) at the thiol:Fe2+ ratio 1:1. М-DNICs are synthesized under identical conditions at the thiol:Fe2+ ratios above 20 and produce an EPR signal with an electronic configuration {Fe(NO)2}7 at gaver. = 2.03. At neutral pH, aqueous solutions contain both M-DNICs and B-DNICs (the content of the latter makes up to 50% of the total DNIC pool). The concentration of B-DNICs decreases with a rise in pH; at рН 9–10, the solutions contain predominantly M-DNICs. The addition of thiol excess to aqueous solutions of B-DNICs synthesized at the thiol:Fe2+ ratio 1:2 results in their conversion into М-DNICs, the total amount of iron incorporated into M-DNICs not exceeding 50% of the total iron pool in B-DNICs. Air bubbling of cys-М-DNIC solutions results in cysteine oxidation-controlled conversion of М-DNICs first into cys-B-DNICs and then into the EPR-silent compound Х able to generate a strong absorption band at 278 nm. In the presence of glutathione or cysteine excess, compound Х is converted into B-DNIC/M-DNIC and is completely decomposed under effect of the Fe2+ chelator о-phenanthroline or N-methyl-d-glucamine dithiocarbamate (MGD). Moreover, MGD initiates the synthesis of paramagnetic mononitrosyl iron complexes with MGD. It is hypothesized that compound Х represents a polynuclear DNIC with cysteine, most probably, an appropriate Roussin’s black salt thioesters and cannot be prepared by simple substitution of М-DNIC cysteine for glutathione. Treatment of М-DNIC with sodium dithionite attenuates the EPR signal at gaver. = 2.03 and stimulates the appearance of an EPR signal at gaver. = 2.0 with a hypothetical electronic configuration {Fe(NO)2}9. These changes can be reversed by storage of DNIC solutions in atmospheric air. The EPR signal at gaver. = 2.0 generated upon treatment of B-DNICs with dithionite also disappears after incubation of B-DNIC solutions in air. In all probability, the center responsible for this EPR signal represents М-DNIC formed in a small amount during dithionite-induced decomposition of B-DNIC.  相似文献   

15.
It has been established that, in the presence of S-nitrosothiols, cysteine, and mitochondria, dinitrosyl iron complexes (DNIC) coupled to low-molecular-weight ligands and proteins are formed. The concentration of DNIC depended on oxygen partial pressure. It was shown that, under the conditions of hypoxia, the kinetics of the formation of low-molecular DNIC was biphasic. After the replacement of anaerobic conditions of incubation with aerobic ones, the level of DNIC came down; in this case, protein dinitrosyl complexes became more stable. We proposed that iron-and sulfur-containing proteins and low-molecular-weight iron complexes are the sources of iron for DNIC formation in mitochondrial suspensions. It was shown that a combination of DNIC and S-nitrosothiols inhibited effectively the respiration of cardiomyocytes.  相似文献   

16.
Nitric oxide is a signaling molecule in intercellular communication as well as a powerful weapon used by macrophages to kill tumor cells and pathogenic bacteria. Here, we show that when Escherichia coli cells are exposed to nitric oxide, its ferredoxin [2Fe-2S] cluster is nitrosylated, forming the dinitrosyl iron complex with a characteristic EPR signal at g(av) = 2.04. Such formed ferredoxin dinitrosyl iron complex is efficiently repaired in E. coli cells even in the absence of new protein synthesis. However, the repair activity is completely inactivated once E. coli cells are disrupted, indicating that repairing the ferredoxin dinitrosyl iron complex requires cellular reducing equivalents. In search of such cellular factors, we find that l-cysteine can effectively eliminate the EPR signal of the ferredoxin dinitrosyl iron complex and release the ferrous iron from the complex. In contrast, N-acetyl-l-cysteine and reduced glutathione are much less effective. l-Cysteine seems to have a general function, since it can also remove the otherwise stable dinitrosyl iron complexes from proteins in the cell extracts prepared from the E. coli cells treated with nitric oxide. We propose that l-cysteine is responsible for removing the dinitrosyl iron complexes from the nitric oxide-modified proteins into which a new iron-sulfur cluster will be reassembled.  相似文献   

17.
Dinitrosyl non-heme–iron complexes (DNIC) are found in many nitric oxide producing tissues. A prerequisite of DNIC formation is the presence of nitric oxide, iron and thiol/imidazole groups. The aim of this study was to investigate the role of the cellular labile iron pool in the formation of DNIC in erythroid K562 cells. The cells were treated with a nitric oxide donor in the presence of a permeable (salicylaldehyde isonicotinoyl hydrazone) or a nonpermeable (desferrioxamine mesylate) iron chelator and DNIC formation was recorded using electron paramagnetic resonance. Both chelators inhibited DNIC formation up to 50% after 6 h of treatment. To further investigate the role of lysosomal iron in DNIC formation, we prevented lysosomal proteolysis by pretreatment of whole cells with NH4Cl. Pretreatment with NH4Cl inhibited the formation of DNIC in a time-dependent manner that points to the importance of the degradation of iron metalloproteins in DNIC formation in vivo. Fractionation of the cell content after treatment with the nitric oxide donor revealed that DNIC is formed predominantly in the endosomal/lysosomal fraction. Taken together, these data indicate that lysosomal iron plays a crucial role in DNIC formation in vivo. Degradation of iron-containing metalloproteins seems to be important for this process.  相似文献   

18.
It has been shown that interaction of cysteine dinitrosyl iron complexes with methylglyoxal leads to the formation of a new type of dinitrosyl iron complexes, EPR spectrum of these complexes essentially differs from spectra of dinitrosyl iron complexes containing unmodified thiol. The products of the cysteine reaction with methylglyoxal are hemithioacetals, Schiff bases and thiazolidines, which most likely serve as ligands for the new type of dinitrosyl iron complexes. It has been shown that the new type of dinitrosyl iron complexes as cysteine dinitrosyl iron complexes, which are physiological donors of nitric oxide, exert a vasodilator effect. It has also been found that the oxidative destruction of the new type of dinitrosyl iron complexes occurs at normal oxygen partial pressure, but these dinitrosyl iron complexes remain rather stable under hypoxia modeling. An assumption that the destruction of the new type of dinitrosyl iron complexes is caused by the formation of a bound peroxynitrite-containing intermediate is made.  相似文献   

19.
Dinitrosyl iron complexes (DNICs) have been traced in rat blood and organs after intravenous infusion of Oxacom. It is shown that the active principle (DNIC with glutathione) is rapidly distributed through the organism and deposited in blood and organs as protein-bound DNICs. The specific levels of DNIC in the main body organs are comparable, whereas its apparent lifetimes relate as blood < heart = lung < liver < kidney. Spin trapping assays indicate that protein-bound DNICs are a major but not the only form of NO deposition; the next largest depot is most probably formed by S-nitrosothiols. The gradual release of NO from such pools ensures the smooth and prolonged hypotensive effect of Oxacom.  相似文献   

20.
Microalgae are very useful organisms as it provides many beneficial products for human use. For large scale cultivation and further applications, its harvesting procedure needs to be enhanced to make the production process of the end product highly affordable. Magnetic nanoparticles have great potential to harvest microalgae as it can easily attract and attach to the algal cell surface forming a layer, which can be harvested quickly under the influence of a magnetic field. Our work on Chlorella pyrenoidosa and Chlorella minutissima shows, 500 mg of the synthesized bare iron oxide nanoparticles, harvests 90% of Chlorella pyrenoidosa (1 g L?1), in 60 s at pH 3 and 600 mg iron oxide nanoparticles, harvests 85% of Chlorella minutissima (1 g L?1) in 60 s at pH 5, which can decrease the amount of time and energy consumed in the overall production costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号