共查询到20条相似文献,搜索用时 0 毫秒
1.
Among the three G-protein-linked acetylcholine receptors (GARs) in Caenorhabditis elegans (C. elegans), GAR-3 is structurally and pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). Using Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the major alternatively spliced isoform of GAR-3, we observed that carbachol stimulated cyclic AMP (cAMP) production in a dose- and time-dependent manner. The stimulating effect of carbachol was abolished by atropine, a muscarinic antagonist, indicating that the cAMP production is specifically mediated by GAR-3b. When the cells were treated with BAPTA-AM and EGTA, which reduce the cytosolic Ca(2+) level, carbachol-stimulated cAMP accumulation was inhibited by approximately 56%. Inhibition of protein kinase C (PKC) by chronic treatment with phorbol 12-myristate 13-acetate (PMA) or by GF109203X decreased carbachol-stimulated cAMP production by as much as 68%. It thus appears that Ca(2+) and PKC are critically involved in GAR-3b-mediated cAMP formation. We also observed that carbachol-stimulated cAMP production was further enhanced by pertussis toxin (PTX) treatment. This observation indicates that GAR-3b couples to a PTX-sensitive G protein, presumably Gi, to attenuate the cAMP accumulation. Taken together, our data show that GAR-3b stimulates cAMP production in CHO cells and suggest that GAR-3b couples to both stimulatory and inhibitory pathways to modulate the intracellular cAMP level. 相似文献
2.
3.
We have previously identified two G protein-linked acetylcholine receptors (GARs), GAR-1 and GAR-3, in the nematode Caenorhabditis elegans. Whereas GAR-3 is a homologue of muscarinic acetylcholine receptors (mAChRs), GAR-1 is similar to but pharmacologically distinct from mAChRs. In the current work we isolated a new type of GAR using C. elegans genome sequence information. This receptor, named GAR-2, consists of 614 amino acid residues and has seven putative transmembrane domains. Database searches indicate that GAR-2 is most similar to GAR-1 and closely related to GAR-3/mAChRs. The overall amino acid sequence identities to GAR-1 and GAR-3 are approximately 32 and approximately 23%, respectively. When GAR-2 was coexpressed with the G protein-activated inwardly rectifying K(+) (GIRK1) channel in XENOPUS: oocytes, acetylcholine was able to evoke the GIRK current in a dose-dependent fashion. Oxotremorine, a classical muscarinic agonist, had little effect on the receptor, indicating that GAR-2 is pharmacologically different from mAChRs but rather similar to GAR-1. GAR-2 differs from GAR-1, however, in that it showed virtually no response to muscarinic antagonists such as atropine, scopolamine, and pirenzepine. Expression studies using green fluorescent protein reporter gene fusion revealed that GAR-2 is expressed in a subset of C. elegans neurons, distinct from those expressing GAR-1. Together with our previous reports, this study demonstrates that diverse types of GARs are present in C. elegans. 相似文献
4.
Tunicamycin, a potent inhibitor of protein glycosylation, was used to study the role of protein glycosylation in the regulation of muscarinic acetylcholine receptor (mAChR) number in cultures of N1E-115, a murine neuroblastoma cell line. At a concentration of 0.35 microgram/ml, tunicamycin inhibited macromolecular incorporation of [3H]mannose by 75-80%, whereas incorporation of [3H]leucine was reduced by only 10%. Treatment with tunicamycin caused a 30% decrease in total membrane mAChR number within 48 h as determined by a filter-binding assay using [3H]quinuclidinyl benzilate ([3H]QNB), a highly specific muscarinic antagonist. Tunicamycin also inhibited the recovery of total membrane mAChR by 70% following carbachol-induced down-regulation. The rate of mAChR degradation (control t1/2 12-14 h) was unaffected by incubation with tunicamycin. Intact cell binding studies using [3H]QNB (a membrane-permeable ligand) to measure total cellular (internal plus cell surface) mAChR and [3H]N-methylscopolamine ([3H]NMS, a membrane-impermeable ligand) to measure cell surface mAChR were conducted to determine whether tunicamycin selectively depleted cell surface mAChR. With 12 h of treatment with tunicamycin, cell surface mAChR number declined by 35%, whereas total cellular mAChR fell by only 10%. The ratio of cell surface receptor to total receptor decreased by 45% after 24 h. These results indicate that protein glycosylation is required for the maintenance of cell surface mAChR number. Incubation with tunicamycin causes a selective depletion of cell surface mAChR, implying that protein glycosylation plays a critical role in transport and/or incorporation of mAChR into the plasma membrane. 相似文献
5.
Yong-Seok Lee Yang-Seo Park Deok-Jin Chang Jung Me Hwang Churl Ki Min† Bong-Kiun Kaang & Nam Jeong Cho 《Journal of neurochemistry》1999,72(1):58-65
Abstract : We have isolated a cDNA clone from the nematode Caenorhabditis elegans that encodes a protein of greatest sequence similarity to muscarinic acetylcholine receptors. This gene codes for a polypeptide of 682 amino acids containing seven putative transmembrane domains. The amino acid identities, excluding a highly variable middle portion of the third intracellular loop, to the human m1-m5 receptors are 28-34%. When this cloned receptor was coexpressed with a G protein-gated inwardly rectifying K+ channel (GIRK1) in Xenopus oocyte, acetylcholine was able to elicit the GIRK current. This acetylcholine-induced current was substantially inhibited by the muscarinic antagonist atropine in a reversible manner. However, another muscarinic agonist oxotremorine and antagonists scopolamine and pirenzepine had little or negligible effects on this receptor. Taken together, these results suggest that the cloned gene encodes a G protein-linked acetylcholine receptor that is most similar to but pharmacologically distinct from muscarinic acetylcholine receptors. 相似文献
6.
Summary The mutation him-6(e1423) leads to generalized chromosomal nondisjunction during meiosis in oogenesis and spermatogenesis of C. elegans. As a result, gametes nullisomic or disomic for each of the six chromosomes occur at appreciable frequency. Crosses utilizing marked him-6 strains were used to generate and identify exceptional euploid progeny which had received both homologues of a marked autosome either from the male parent or from the female parent. Examples of all ten possible exceptions were identified and found to be viable and fertile. These results (together with previous data for the X chromosome) indicate that major chromosomal imprinting effects do not occur during gametogenesis in this organism. 相似文献
7.
Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3. 相似文献
8.
An endogenous inhibitor of L-[3H]quinuclinidinyl benzilate binding to the brain muscarinic acetylcholine receptor was identified. [3H]Quinuclinidinyl benzilate binding to rat brain synaptosomes was measured using a filtration assay. The inhibitor was prepared from several calf tissues and was found in highest specific activity in thymus. The loss of binding activity was slow, requiring a 30-40 min preincubation of the synaptosomes with the inhibitor, and reversed by removing the inhibitor by washing the membranes. Scatchard analysis of the binding data showed that the inhibition was noncompetitive resulting from both a decrease in affinity and a decrease in the number of binding sites. Zn2+ was required in low concentrations for this effect. Muscarinic acetylcholine receptor in synaptic membranes and in membranes free of most peripheral membrane proteins was still sensitive to inhibition. Preliminary characterization of the inhibitory molecule showed that it is of low molecular weight, moderately heat-stable, and acidic. The inhibitor was inactivated by reagents that are nonspecific for nucleophiles, but not by reagents specific for primary amine or thiol groups. 相似文献
9.
The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes. 相似文献
10.
Summary Mutations in the major gut esterase of the nematode Caenorhabditis elegans have been induced by ethylmethane sulfonate and detected by isoelectric focusing. The gut esterase locus, denoted ges-1, maps less than 0.3 map units to the right of the unc-60 locus, at the left end of chromosome V. 相似文献
11.
Roberto Maggio Pascaline Barbier rea Toso Davide Barletta Giovanni U. Corsini 《Journal of neurochemistry》1995,65(2):943-946
Abstract: We have characterized the internalization of muscarinic acetylcholine receptors induced by the nitric oxide (NO)-generating compound sodium nitroprusside. When Chinese hamster ovary cells, stably transfected with the human m4 muscarinic receptor subtype, were incubated for 1 h in the presence of 700 µ M sodium nitroprusside, the number of receptors measured in intact cells with the hydrophilic ligand N -[3 H]methylscopolamine was reduced by 30%. The effect was dose dependent, beginning with a concentration of sodium nitroprusside as low as 45 µ M . Removal of sodium nitroprusside from the incubation medium did not result in a recovery of the binding sites. The phenomenon was temperature dependent and was blocked by the muscarinic antagonist atropine. No receptor diminution was detected when the number of binding sites was evaluated with the lipophilic antagonist [3 H]quinuclidinyl benzilate. This indicates that sodium nitroprusside induces a redistribution of the muscarinic receptors between the plasma membrane and an internal compartment of the cell. Receptor loss was readily reversed by treatment with the sulfhydryl reducing agent diethyldithiocarbamate. Our data provide evidence that muscarinic receptors are internalized by sodium nitroprusside through the oxidation of sulfhydryl groups; they also suggest that NO could play a role in muscarinic receptor desensitization. 相似文献
12.
Sergio H. Simonetta Andrés Romanowski Alicia N. Minniti Nibaldo C. Inestrosa Diego A. Golombek 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2008,194(9):821-828
Circadian rhythms control several behaviors through neural networks, hormones and gene expression. One of these outputs in invertebrates, vertebrates and plants is the stress resistance behavior. In this work, we studied the circadian variation in abiotic stress resistance of adult C. elegans as well as the genetic mechanisms that underlie such behavior. Measuring the stress resistance by tap response behavior we found a rhythm in response to osmotic (NaCl LC(50) = 340 mM) and oxidative (H(2)O(2) LC(50) = 50 mM) shocks, with a minimum at ZT0 (i.e., lights off) and ZT12 (lights on), respectively. In addition, the expression of glutathione peroxidase (C11E4.1) and glycerol-3-phosphate dehydrogenase (gpdh-1) (genes related to the control of stress responses) also showed a circadian fluctuation in basal levels with a peak at night. Moreover, in the mutant osr-1 (AM1 strain), a negative regulator of the gpdh-1 pathway, the osmotic resistance rhythms were masked at 350 mM but reappeared when the strain was treated with a higher NaCl concentration. This work demonstrates for the first time that in the adult nematode, C. elegans stress responses vary daily, and provides evidence of an underlying rhythmic gene expression that governs these behaviors. 相似文献
13.
Timmons LD 《Journal of bioenergetics and biomembranes》2007,39(5-6):459-463
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded
RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach
using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants,
we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter
genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their
roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles
for some transporter genes in endogenous RNAi-related processes. 相似文献
14.
The effect of compounds that activate sodium channels on the number of muscarinic acetylcholine receptors in neuroblastoma NIE 115 cells has been investigated. The cells were used in electrically unexcitable ("control" cells) and excitable ("differentiated" cells) states. Although receptor assays using a single concentration of the radioligand [3H]scopolamine methyl chloride indicated a loss of receptors after a 6-h incubation of cells with veratrine, no true loss of receptors was seen with any of the compounds tested (veratridine, veratrine, aconitine) when full saturation analyses were performed in either control or differentiated cells. The apparent receptor loss seen with veratrine was due to a muscarinic receptor-active component of veratrine (not veratridine) occluded by the cells and released into the binding assays upon cell breakage. Veratridine and aconitine have a very low affinity for muscarinic acetylcholine receptors, and the binding of carbamoylcholine to the receptors is unaffected by tetrodotoxin, so that there is no evidence in this system for interaction between muscarinic receptors and sodium channels. 相似文献
15.
A monoclonal antibody raised against the muscarinic acetylcholine affinity-alkylating antagonist propylbenzilylcholine mustard was tested for its ability to recognize affinity-alkylated muscarinic receptors. We demonstrate here that although the antibody will not recognize the mustard when it is covalently linked to the native muscarinic receptor, trypsinization of affinity-labeled membranes releases a proteolytic labeled fragment that can be specifically immunoprecipitated by the antibody. Electrophoretic analysis of the immunoprecipitate indicates that the ligand was associated with a polypeptide of molecular weight 5,000. The recognition of this fragment by the antibody provides a means to immunopurify a portion of the muscarinic receptor that is at or near the ligand binding site. 相似文献
16.
Muscarinic acetylcholine receptors purified from porcine cerebrum were phosphorylated by protein kinase C purified from the same tissue. More than 1 mol of phosphate was incorporated per mole of receptor, with both serine and threonine residues being phosphorylated. Neither the degree nor the rate of the phosphorylation was affected by the presence or absence of acetylcholine. GTP-sensitive high-affinity binding with acetylcholine was observed for muscarinic receptors reconstituted with GTP-binding proteins (Gi or Go), irrespective of whether muscarinic receptors or the GTP-binding proteins had been phosphorylated by protein kinase C or not. This indicates that the interaction between purified muscarinic receptors and purified GTP-binding proteins in vitro is not affected by their phosphorylation. 相似文献
17.
RNAi mechanisms in Caenorhabditis elegans 总被引:5,自引:0,他引:5
Grishok A 《FEBS letters》2005,579(26):5932-5939
18.
Tat-mediated protein delivery in living Caenorhabditis elegans 总被引:2,自引:0,他引:2
Delom F Fessart D Caruso ME Chevet E 《Biochemical and biophysical research communications》2007,352(3):587-591
The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm. 相似文献
19.
Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariners half-life (the time by which half an elements sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome.
When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois. 相似文献
20.
Brown LA Jones AK Buckingham SD Mee CJ Sattelle DB 《International journal for parasitology》2006,36(6):617-624
Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation. 相似文献