首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urocortin (UCN) and corticotropin-releasing factor (CRF) are members of CRF family. Though CRF is mainly distributed in central nervous system (CNS), UCN has been reported to play biologically diverse roles in several systems such as cardiovascular, respiratory, digestive, reproductive, stress, immunologic system, etc. UCN and CRF bind to two known receptors, CRFR1 and CRFR2, to function. Both CRF receptors are distributed in CNS and periphery tissues, and their expression in cancer tissues has been reported. Now there are many documents indicating UCN/CRF play an important role in the regulation of carcinogenesis. There is also evidence indicating UCN/CRF have anticancer effects via CRFRs. This paper will review the effects of CRF family in cancers.  相似文献   

2.
Corticotropin-releasing factor (CRF), which activates the hypothalamic-pituitary- adrenal axis under stress, also has proinflammatory peripheral effects possibly through mast cells. The purpose of this study was to investigate the effect of urocortin (UCN), a 40-amino-acid CRF family peptide, on degranulation and intracellular calcium of rat lung mast cells. The activation and degranulation of mast cells were observed by Toluidine blue staining and transmission electron microscope. The intracellular calcium was investigated using confocal laser scanning microscopy and flow cytometry. The results indicated that all the three different concentrations of UCN (0.1, 1 and 10 microM) significantly induced the activation and degranulation of rat lung mast cells in vitro. This effect was markedly blocked by selective CRF receptor 1 (CRF-R1) antagonist antalarmin, but not by specific CRF receptor 2 (CRF-R2) antagonist antisauvagine-30 (anti-Svg-30). The results also showed that UCN caused a rapid peak increase in [Ca(2+)](i) at point of 300s after UCN treatment, followed by a decrease to a sustained plateau phase. The peak increase in [Ca(2+)](i) induced by UCN was significantly inhibited by antalarmin, but not by anti-Svg-30. This effect of UCN on [Ca(2+)](i) in rat lung mast cells was also found by flow cytometry. Regression analysis revealed a positive correlation between mast cells degranulation extent and the maximum value of [Ca(2+)](i) (P < 0.01). Taken together, our present study suggested that UCN induced the increase of [Ca(2+)](i) and degranulation of rat lung mast cells through CRF-R1. These findings may have implications for the pathophysiology of allergic and inflammatory lung disorders such as asthma, which is closely associated with mast cell activation and degranulation.  相似文献   

3.
Urocortin (UCN), a newly isolated peptide, has been found to play an important role mainly in female reproductive system. In order to investigate the effect of UCN on T-type calcium currents (I(Ca,T)), exploring the mechanisms of UCN's role in male reproductive system, especially in acrosome reaction, we directly measured the I(Ca,T) in mouse spermatogenic cells exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN reversibly inhibited the T-type Ca(2+) currents in the cells in a concentration-dependent manner. The current density was inhibited by about 19% after exposure of the cells to UCN (0.1 microM) for 5 min, from the control value of 6.75+/-1.17 to 5.26+/-0.82pA/pF. UCN up-shifted the current-voltage (I-V) curve. Frequency-dependence of UCN's effects on I(Ca,T) was also observed. Moreover, UCN at 0.1 microM did not markedly affect the activation of I(Ca,T) but shifted the inactivation curve of I(Ca,T) to the left. The inhibitory effect of UCN on the T-type Ca(2+) current was not affected by Astressin, the CRF receptor blocker. Since T-type calcium channels are a key component in acrosome reaction, our data suggest that UCN might be a significant factor in male reproductive action and a potential contraceptive agent.  相似文献   

4.
In addition to the brain and pituitary gland, the corticotrophin‐releasing factor (CRF) system is expressed in peripheral tissues. In this study we characterize the expression of CRF, urocortins (UCN1, UCN2, and UCN3), and their receptors (CRFR1 and CRFR2) in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast‐like synoviocytes (FLS). Moreover, we analyze the vasoactive intestinal peptide (VIP) effect on the CRF system, as well as its physiological consequences on mediators of inflammatory/destructive processes. CRF and UCNs exhibit differential pattern in OA and RA‐FLS. By real‐time PCR we detected more expression of CRF and UCN1 in RA, and UCN2 and UCN3 in OA, while the CRFR2 expression was similar. In RA‐FLS VIP treatment resulted in a significant decrease of the proinflammatory peptides, CRF and UCN1, and a significant increase of the potential anti‐inflammatory agents, UCN3 and CRFR2. Using Western blot assays, we showed that the ratio between phospho‐CREB (p‐CREB) and c‐AMP response element‐binding (CREB) is higher in OA and significantly lower in RA‐FLS after VIP treatment, with consequences upon cAMP response element in CRF and UCN1 genes. Real‐time PCR and EIA proved that VIP significantly inhibits cycloxygenase‐2 (COX‐2) and prostaglandin E2 (PGE2) in RA‐FLS. In all cases, we consider significant data when P < 0.05. These data indicate a role of endogenous CRF, UCNs, and CRFR2 in the OA and RA joint microenvironment. We confirm the anti‐inflammatory function of VIP, through the modulation of the expression of CRF system that impacts in a reduction of mediators with inflammatory/destructive functions, supporting its therapeutic potential in rheumatic diseases. J. Cell. Physiol. 226: 3261–3269, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Corticotropin-releasing factor (CRF) and the urocortins (UCNs) are structurally and pharmacologically related neuropeptides which regulate the endocrine, autonomic, emotional and behavioral responses to stress. CRF and UCN1 activate both CRF receptors (CRFR1 and CRFR2) with CRF binding preferentially to CRFR1 and UCN1 binding equipotently to both receptors. UCN2 and UCN3 activate selectively CRFR2. Previously an in vitro study demonstrated that superfusion of both CRF and UCN1 elevated the GABA release elicited by electrical stimulation from rat amygdala, through activation of CRF1 receptors. In the present experiments, the same in vitro settings were used to study the actions of CRF and the urocortins on hypothalamic GABA release. CRF and UCN1 administered in equimolar doses increased significantly the GABA release induced by electrical stimulation from rat hypothalamus. The increasing effects of CRF and UCN1 were inhibited considerably by the selective CRFR1 antagonist antalarmin, but were not influenced by the selective CRFR2 antagonist astressin 2B. UCN2 and UCN3 were ineffective. We conclude that CRF1 receptor agonists induce the release of GABA in the hypothalamus as well as previously the amygdala. We speculate that CRF-induced GABA release may act as a double-edged sword: amygdalar GABA may disinhibit the hypothalamic CRF release, leading to activation of the hypothalamic-pituitary-adrenal axis, whereas hypothalamic GABA may inhibit the hypothalamic CRF release, terminating this activation.  相似文献   

6.
7.
Urocortin-1 (UCN) a corticotropin releasing-factor (CRF) related peptide, has been found to be expressed in many different tissues like the central nervous system, the cardiovascular system, adipose tissue, and skeletal muscle. The effects of UCN are mediated via stimulation of CRF-receptors 1 and 2 (CRFR1 and 2, CRFR’s) with a high affinity for CRFR2. It has been shown that the CRF-related peptides and CRFR’s are involved in the regulation of stress-related endocrine, autonomic and behavioural responses. Using immunocytochemistry, immunohistochemistry and RT–PCR, we now can show the differentiation dependent expression of UCN mRNA and peptide in human mesenchymal progenitor cells (MSCs) directed to the osteoblastic phenotype for the first time. UCN expression was down regulated by TGF-beta and BMP-2 in the early proliferation phase of osteoblast development, whereas dexamethasone (dex) minimally induced UCN gene expression during matrix maturation after 24 h stimulation. Stimulation of MSCs for 28 days with ascorbate/beta-glycerophosphate (asc/bGp) induced UCN gene expression at day 14. This effect was prevented when using 1,25-vitamin D3 or dex in addition. There was no obvious correlation to osteocalcin (OCN) gene expression in these experiments. In MSCs from patients with metabolic bone disease (n = 9) UCN gene expression was significantly higher compared to MSCs from normal controls (n = 6). Human MSCs did not express any of the CRFR’s during differentiation to osteoblasts. Our results indicate that UCN is produced during the development of MSCs to osteoblasts and differentially regulated during culture as well as by differentiation factors. The expression is maximal between proliferation and matrix maturation phase. However, UCN does not seem to act on the osteoblast itself as shown by the missing CRFR’s. Our results suggest new perspectives on the role of urocortin in human skeletal tissue in health and disease.  相似文献   

8.
Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.  相似文献   

9.
Corticotropin-releasing factor (CRF) receptors have been demonstrated to be widely expressed in the central nervous system and in many peripheral tissues of mammalians. However, it is still unknown whether CRF receptors will function in cerebellar Purkinje neurons. In the present study, we investigated the expression profile of CRF receptors in rat cerebellum and identified a novel functional role of CRFR2 in modulating Purkinje neuron P-type Ca2+ currents (P-currents). We found that CRFR2α mRNA, but not CRFR1 and CRFR2β, was endogenously expressed in rat cerebellum. Activation of CRFR2 by UCN2 inhibited P-currents in a concentration-dependent manner (IC50 ~ 0.07 µM). This inhibitory effect was abolished by astressin2B, a CRFR2 antagonist, and was blocked by GDP-β-S, pertussis toxin, or a selective antibody raised against the Goα. Inhibition of phospholipase C (PLC) blocked the inhibitory action of UCN2. The application of diacylglycerol (DAG) antagonist, 1-hexadecyl-2-acetyl-sn-glycerol, as well as inhibition of either protein kinase C or its epsilon isoform (PKCε) abolished the UCN2 effect while 1-oleoyl-2-acetyl-sn-glycerol (EI-150), a membrane-permeable DAG analogue, occluded UCN2-mediated inhibition. In addition, UCN2 significantly increases spontaneous firing frequency of Purkinje neurons in cerebellar slices. In summary, activation of CRFR2 inhibits P-currents in Purkinje neurons via Goα-dependent PLC/PKCε pathway, which might contribute to its physiological functions in the cerebellum.  相似文献   

10.
The role of corticotropin-releasing factor receptors in stress and anxiety   总被引:1,自引:1,他引:0  
Corticotropin releasing factor (CRF) is a critical integratorof the hypothalamic-pituitary-adrenal (HPA) axis in responseto stress. CRF and its related molecule urocortin (UCN) bindCRF receptor 1 (CRFR1) and CRFR2 with distinct affinities. Micedeficient for CRFR1 or CRFR2 were generated in order to determinethe physiological role of these receptors. While CRFR1-mutantmice show a depleted stress response and display anxiolytic-likebehavior, CRFR2-mutant mice are hypersensitive to stress anddisplay anxiogenic-like behavior. Both CRFR1- and CRFR2-mutantmice show normal basal feeding and weight gain, but CRFR2-mutantmice exhibit decreased food intake following a stress of fooddeprivation. While CRFR2-mutant mice display increased levelsof CRF mRNA in the central nucleus of the amygdala (cAmyg) butnot in the paraventricular nucleus of the hypothalamus (PVN),the CRFR1-mutant mice express high levels of CRF in the PVNbut normal levels in the cAmyg. CRFR2-mutant mice also displayincreased levels of Ucn mRNA and protein in the edinger westphalnucleus (EW) as well as an increased number of cells expressingUcn. The levels of these CRF-receptor ligands reflect the stateof the receptor-deficient mice. These results demonstrate apossible modulatory function of CRFR2 in response to CRFR1 stimulationof the HPA axis or anxiety.  相似文献   

11.
Urocortin (UCN) II, a newly isolated corticotropinreleasing- factor (CRF) related peptide, has been found to have potent cardiovascular protective effects. To investigate the mechanisms of its vascular protective effects, we exposed mesenteric arterial smooth muscle cells (MASMC) from spontaneously hypertensive rats (SHR) to UCN II to observe the change in cell apoptosis using TUNEL assay and measured intracellular calcium concentration ([Ca2+]i) using confocal laser scanning microscope. In addition, effects of UCN II on L-type calcium currents (ICa,L) were also measured using whole-cell patch clamp. Our results showed that UCN II concentration-dependently, but time-independently inhibited cell apoptosis. Astressin 2B, a special CRF 2 receptor antagonist, had no influence on this inhibition. Hypoxia or Bay K8644, the L-type calcium channel activator, induced the apoptosis of MASMC from SHR. Pretreatment of the cells with UCN II diminished the effects of hypoxia or Bay K8644. UCN II was also observed to reduce [Ca2+]i increase induced by KCl or Bay K8644. UCN II concentration-dependently inhibited ICa,L, which was not affected by astressin 2B. It did not affect the activation of ICa,L, but markedly shifted the inactivation curve to the left. In conclusion, UCN II inhibits the apoptosis of MASMC from SHR via inhibiting L-type calcium channels.  相似文献   

12.
13.
14.
Kageyama K  Kimura R  Suga S  Ogawa Y  Suda T  Wakui M 《Peptides》2006,27(7):1814-1819
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors type 1 (CRF1 receptor) and type 2 (CRF2 receptor). In a previous study, we reported that CRF, an endogenous ligand for CRF1 receptor, modulated Ca2+ influx in rat pancreatic beta-cells. In addition to CRF, other additional members of the family, urocortins, have been identified in mammals. Urocortin 1 (UCN 1), a peptide of the CRF family, binds both CRF1 receptor and CRF2 receptor with equal affinities. Urocortin 3 (UCN 3), a highly selective ligand for CRF2 receptor with little affinity for CRF1 receptor, has been shown in rat pancreatic beta-cells. The present study focused on the effects of the CRF family peptides on intracellular Ca2+ ([Ca2+]i) concentration via CRF receptors in rat pancreatic beta-cells. Microfluorimetric experiments showed that CRF (0.2 nM) and UCN 1 (0.2 nM) elevated [Ca2+]i levels. Both CRF and UCN 1 effects were attenuated by astressin, a non-selective CRF receptor antagonist. Antisauvagine-30, a selective CRF2 receptor antagonist, appeared to enhance the UCN 1 effect on the elevation of [Ca2+]i. The CRF effect on the elevation of [Ca2+]i was inhibited by the addition of UCN 3. Taken together, the activation of CRF2 receptor antagonizes the CRF1 receptor-stimulated Ca2+ influx.  相似文献   

15.
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors. CRF receptor type 2beta (CRFR2beta) messenger RNA (mRNA) is expressed primarily in the cardiovascular system, where its levels are decreased by urocortin 1 (Ucn1), a novel peptide in the CRF family. In a previous study, we reported that CRFR2beta mRNA levels were partially down-regulated via the cAMP-protein kinase A pathway. This study focused on the involvement of the intracellular mitogen-activated protein (MAP) kinase pathway in the modulation of CRFR2beta mRNA levels. Ribonuclease protection assays showed that decreases in CRFR2beta mRNA levels induced by Ucn1 and cAMP were attenuated by the p38 MAP kinase inhibitor SB202190 or SB203580. This finding suggested that the p38 MAP kinase pathway was involved in this regulation. Anisomycin, a classic p38 kinase activator, increased CRFR2beta mRNA levels in A7r5 cells. This effect of anisomycin was completely reversed by H7, a serine/threonine kinase inhibitor, while both p38 kinase and MAP kinase kinase inhibitors failed to block the increase in CRFR2beta mRNA levels caused by anisomycin. As anisomycin can activate Jun amino terminal kinases, as well as p38 MAP kinase, it is possible that other MAP kinases, such as Jun amino terminal kinases, also contribute to the increase in gene levels. Alternatively, anisomycin may increase CRFR2beta mRNA levels indirectly as a consequence of blocking protein synthesis.  相似文献   

16.
Although it is known that urocortin 1 (UCN) acts on both corticotropin-releasing factor receptors (CRF(1) and CRF(2)), the mechanisms underlying UCN-induced anorexia remain unclear. In contrast, ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, stimulates food intake. In the present study, we examined the effects of CRF(1) and CRF(2) receptor antagonists (CRF(1)a and CRF(2)a) on ghrelin secretion and synthesis, c-fos mRNA expression in the caudal brain stem, and food intake following intracerebroventricular administration of UCN. Eight-week-old, male Sprague-Dawley rats were used after 24-h food deprivation. Acylated and des-acylated ghrelin levels were measured by enzyme-linked immunosorbent assay. The mRNA expressions of preproghrelin and c-fos were measured by real-time RT-PCR. The present study provided the following important insights into the mechanisms underlying the anorectic effects of UCN: 1) UCN increased acylated and des-acylated ghrelin levels in the gastric body and decreased their levels in the plasma; 2) UCN decreased preproghrelin mRNA levels in the gastric body; 3) UCN-induced reduction of plasma ghrelin and food intake were restored by CRF(2)a but not CRF(1)a; 4) UCN-induced increase of c-fos mRNA levels in the caudal brain stem containing the nucleus of the solitary tract (NTS) was inhibited by CRF(2)a; and 5) UCN-induced reduction of food intake was restored by exogenous ghrelin and rikkunshito, an endogenous ghrelin secretion regulator. Thus, UCN increases neuronal activation in the caudal brain stem containing NTS via CRF(2) receptors, which may be related to UCN-induced inhibition of both ghrelin secretion and food intake.  相似文献   

17.
Corticotrophin-releasing factor receptor 2β (CRFR2β) is expressed in the myocardium. In the present study we explore whether acute treatment with the neuropeptide corticotrophin-releasing factor (CRF) could induce cytoprotection against a lethal ischemic insult in the heart (isolated murine neonatal cardiac myocytes and the isolated Langendorff perfused rat heart) by activating CRFR2. In vitro, CRF offered cytoprotection when added prior to lethal simulated ischemic stress by reducing apoptotic and necrotic cell death. Ex vivo, CRF significantly reduced infarct size from 52.1±3.1% in control hearts to 35.3±3.1% (P<0.001) when administered prior to a lethal ischemic insult. The CRF peptide did not confer cytoprotection when administered at the point of hypoxic reoxygenation or ischemic reperfusion. The acute effects of CRF treatment are mediated by CRF receptor type 2 (CRFR2) since the cardioprotection ex vivo was inhibited by the CRFR2 antagonist astressin-2B. Inhibition of the mitogen activated protein kinase-ERK1/2 by PD98059 failed to inhibit the effect of CRF. However, both protein kinase A and protein kinase C inhibitors abrogated CRF-mediated protection both ex vivo and in vitro. These data suggest that the CRF peptide reduces both apoptotic and necrotic cell death in cardiac myocytes subjected to lethal ischemic induced stress through activation of PKA and PKC dependent signaling pathways downstream of CRFR2.  相似文献   

18.
Sun QY  Liu H  Li XB  Song XF  Yu JQ  Li GH  Chen DY 《Theriogenology》1996,46(2):359-367
Fresh semen was collected from adult male giant pandas and the role of Ca2+, Ca2+ ionophore A23187 and protein kinase C (PKC) in sperm motility and acrosome reaction (AR) was assessed by lens culinaris agglutinin conjugated with fluorescein isothiocyanate (FITC-LCA) labeling and transmission electron microscopy. The AR in giant panda spermatozoa was characterized by vesiculation of the outer acrosomal membrane through its invagination. Both the sperm motility and the AR rate decreased significantly (p < 0.05) in Ca2+-free and low Ca2+ medium. The addition of 10 microM Ca2+ ionophore A23187 potently stimulated AR. After incubation for capacitation, the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated AR in a dose-dependent manner and its effect could be overcome by the PKC inhibitor staurosporine. These results suggest that Ca2+ and PKC play an important role in the sperm acrosome reaction of the giant panda.  相似文献   

19.
Xu JF  Chen XQ  Du JZ  Wang TY 《Peptides》2005,26(4):639-646
We demonstrated previously that hypoxia activated CRF and CRF mRNA in PVN, and CRF receptor 1 (CRFR1) mRNA in rat pituitary. The aim of the study is to test whether the hypoxia-activated CRF and CRF mRNA is associated with triggering CRFR1. Rats were exposed to hypobaric hypoxia at altitude of 2 and 5 km. CRF and CRF mRNA were assayed by immunostaining and in situ hybridization. CRFR1 mRNA was assayed by RT-PCR. Results showed that 5 km continual hypoxia increased CRF and CRF mRNA in PVN, CRFR1 mRNA in pituitary, and plasma corticosterone. The hypoxia-increased CRF, CRF mRNA, CRFR1 mRNA, and corticosterone were blocked by CRFR1 antagonist (CP-154,526), suggesting that CRFR1 in PVN and pituitary are responsible for the hypoxia-increased CRF and CRF mRNA in PVN.  相似文献   

20.
Urocortins are members of the hypothalamic corticotropin-releasing factor (CRF) peptide family. Urocortin1 (UCN1) mRNA has been reported to be expressed in the brainstem neurons. The present investigation was carried out to test the hypothesis that microinjections of UCN1 into the nucleus ambiguus (nAmb) may elicit cardiac effects. Urethane-anesthetized, artificially ventilated, adult male Wistar rats, weighing between 300-350 g, were used. nAmb was identified by microinjections of l-glutamate (5 mM, 30 nl). Microinjections (30 nl) of different concentrations (0.062, 0.125, 0.25, and 0.5 mM) of UCN1 into the nAmb elicited bradycardic responses (26.5 ± 1, 30.1 ± 1.7, 46.9 ± 1.7, and 40.3 ± 2.6 beats/min, respectively). These heart rate responses were not accompanied by significant changes in mean arterial pressure. The bradycardic responses to maximally effective concentration of UCN1 (0.25 mM) were significantly (P < 0.05) attenuated by prior microinjections of a selective antagonist (NBI 27914, 1.5 mM) for CRF type 1 receptor (CRF1R). Prior microinjections of ionotropic glutamate receptor (iGLUR) antagonists [d-(-)-2-amino-7-phosphono-heptanoic acid and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-(f)quinoxaline-7-sulfonamide disodium] also attenuated the bradycardia elicited by UCN1 microinjections into the nAmb. Microinjections of NBI 27914 (1.5 mM) into the nAmb did not alter baroreflex responses. Bilateral vagotomy abolished the bradycardic responses to microinjections of UCN1 into the nAmb. These results indicated that 1) microinjections of UCN1 into the nAmb elicited bradycardia, 2) the bradycardia was vagally mediated, 3) activation of CRF1Rs in the nAmb was responsible for the actions of UCN1, and 4) activation of iGLURs in the nAmb also participated in the bradycardia elicited by UCN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号