首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

3.
Seven polymorphic loci mapping to human chromosomal region 11q22-qter   总被引:11,自引:0,他引:11  
Seven polymorphic loci that map to human chromosomal region 11q22-qter are revealed by DNA probes isolated from a chromosome-specific phage library constructed from a human X mouse somatic cell hybrid that has retained an 11q;16q translocation as the only human DNA. Three probes, each of which reveals a two-allele polymorphism, and four probes, each of which detects two linked RFLPs, have been characterized. Using a somatic cell hybrid mapping panel that divides 11q into four discrete sections, the seven clones have been localized to specific chromosomal regions. Localization of one of the clones has been confirmed and refined by in situ hybridization.  相似文献   

4.
5.
6.
7.
Summary DiGeorge syndrome (DGS) is a human developmental defect of the structures derived from the third and fourth pharyngeal pouches. It apparently arises due to deletion of 22q11. We describe a strategy for the isolation of DNA probes for this region. A deleted chromosome 22, which includes 22q11, was flow-sorted from a lymphoblastoid cell line of a patient with cat eye syndrome and used as the source of DNA. A DNA library was constructed from this chromosome by cloning into the EcoR1 site of the vector Lambda gt10. Inserts were amplified by PCR and mapped using a somatic cell hybrid panel of this region. Out of 32 probes, 14 were mapped to 22q11. These probes were further sublocalised within the region by dosage analysis of DGS patients, and by the use of two new hybrid cell lines which we have produced from DGS patients. One of these lines (7939B662) contains the altered human chromosome segregated from its normal homologue. This chromosome 22 contains an interstitial deletion in 22q11, and will be useful for localising further probes to the DGS region.  相似文献   

8.
We have ordered nine polymorphic DNA markers within detailed map of the proximal part of the human X chromosome long arm, extending from band q11 to q22, by use of both physical mapping with a panel of rodent-human somatic hybrids and multipoint linkage analysis. Analysis of 44 families (including 17 families from the Centre d'Etude du Polymorphisme Humain) provided highly significant linkage data for both order and estimation of map distances between loci. We have obtained the following order: DXS1-DXS159-DXYS1-DXYS12-DXS3-(DXS94 , DXS178)-DXYS17. The most probable location of DXYS2 is between DXS159 and DXS3, close to DXYS1 and DXYS12. The high density of markers (nine loci within 30 recombination units) and the improvement in the estimation of recombination frequencies should be very useful for multipoint mapping of disease loci in this region and for diagnostic applications.  相似文献   

9.
CATCH 22 syndromes, which include DiGeorge syndrome and Velocardiofacial syndrome, are the most common cause of congenital heart disease which involve microdeletion of 22q11. Using a strategy including EST searching, PCR amplification and 5'-RACE, we have cloned a 1487 bp cDNA fragment from human heart cDNA library. The cloned GNB1L cDNA encodes a G-protein beta-subunit-like polypeptide, and the GNB1L gene is located in the critical region for DiGeorge syndrome. A comparison of GNB1L cDNA sequence with corresponding genomic DNA sequence revealed that this gene consists of seven exons and spans an approximately 60 kb genomic region. Northern blot analysis revealed GNB1L is highly expressed in the heart.  相似文献   

10.
Summary Human sperm chromosomes were studied in a man heterozygous for a paracentric inversion of chromosome 7 (q11q22). The pronuclear chromosomes were analysed after in vitro penetration of golden hamster (Mesocricetus auratus) eggs. Ninety-four sperm chromosome spreads were examined, of which 34 contained the normal number 7 chromosome and 59 the inverted 6. This segregation was significantly different from the expected 1:1 ratio. The number of X- to Y-bearing sperm was 48 and 46 respectively. No sperm contained a recombinant chromosome caused by a crossover within the inversion. The frequency of chromosomal abnormalities in other chromosomes was 9.6%, which is not significantly different from the frequency observed in normal donors (8.9%) in our laboratory. These result suggest that the risk of chromosomally unbalanced sperm is not high for this paracentric inversion.  相似文献   

11.
Funke B  Pandita RK  Morrow BE 《Genomics》2001,73(3):264-271
Three congenital disorders, cat-eye syndrome (CES), der(22) syndrome, and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), result from tetrasomy, trisomy, and monosomy, respectively, of part of 22q11. They share a 1.5-Mb region of overlap, which contains 24 known genes. Although the region has been sequenced and extensively analyzed, it is expected to contain additional genes, which have thus far escaped identification. To understand completely the molecular etiology of VCFS/DGS, der(22) syndrome, and CES, it is essential to isolate all genes in the interval. We have identified and characterized a novel human gene, located within the 1.5-Mb region deleted in VCFS/DGS, trisomic in der(22) syndrome and tetrasomic in CES. The deduced amino acid sequence of the human gene and its mouse homologue contain several WD40 repeats, but lack homology to known proteins. We termed this gene WDR14 (WD40 repeat-containing gene deleted in VCFS). It is expressed in a variety of human and mouse adult and fetal tissues with substantial expression levels in the adult thymus, an organ hypoplastic in VCFS/DGS.  相似文献   

12.
Translocation t(11;22)(q23;q11) is the most common constitutional reciprocal translocation in man. Balanced carriers are phenotypically normal, except for decreased fertility, an increased spontaneous abortion rate and a possible predisposition to breast cancer in some families. Here, we report the high resolution mapping of the t(11;22)(q23;q11) breakpoint. We have localised the breakpoint, by using fluorescence in situ hybidisation (FISH) walking, to a region between D11S1340 and WI-8564 on chromosome 11, and D22S134 and D22S264 on chromosome 22. We report the isolation of a bacterial artificial chromosome (BAC) clone spanning the breakpoint in 11q23. We have narrowed down the breakpoint to an 80-kb sequenced region on chromosome 11 and FISH analysis has revealed a variation of the breakpoint position between patients. In 22q11, we have sequenced two BACs (BAC2280L11 and BAC41C4) apparently mapping to the region; these contain low copy repeats (LCRs). Southern blot analysis with probes from BAC2280L11 has revealed different patterns between normal controls and translocation carriers, indicating that sequences similar/identical to these probes flank the translocation breakpoint. The occurrence of LCRs has previously been associated with genomic instability and "unclonable" regions. Hence, the presence of such repeats renders standard translocation breakpoint cloning techniques ineffective. Thus, we have used high resolution fiber-FISH to study this region in normal and translocation cases by using probes from 22q11, LCRs and 11q23. We demonstrate that the LCR containing the gap in 22q11 is probably substantially larger than the previous estimates of 100 kb. Using fiber-FISH, we have localised the breakpoint in 22q11 to approximately 20-40 kb from the centromeric border of the LCR (i.e. the telomeric end of AC006547) and have confirmed the breakpoint position on 11q23.  相似文献   

13.
Hereditary paragangliomas (PGL, glomus tumors, MIM no.168000) are mostly benign, slow-growing tumors of the head and neck region. The gene (or genes) affecting risk to PGL are subject to genomic imprinting: children of affected fathers exhibit an autosomal dominant pattern of disease inheritance, whereas children of affected mothers rarely if ever develop the disease through maternal transmission. We previously confined the disease gene to an approximately 6 Mb critical region on chromosome band 11q23 (PGL1). Based on haplotype analysis of an extended Dutch pedigree, a 2 Mb sub-region between D11S938 and D11S1885 was proposed as the PGL1 critical interval. In this study, we excluded this interval by analysis of two new single tandem repeat polymorphisms (STRP) contained therein. Instead, we predicted a non-overlapping, more proximal 2 Mb critical interval between D11S1647 and D11S897, and evaluated this new region using nine STRP (D11S1986, five new, closely-linked STRP, D11S1347, D11S3178, and D11S1987). Consistent with our prediction, we observed substantial haplotype-sharing within the Dutch pedigree. We also analyzed four new American PGL families. A recombination event detected in one family further defined D11S1347 as the new telomeric border. We observed significant haplotype-sharing within this new interval among three unrelated American PGL families, strongly suggesting that they originated from a common ancestor. Thus, we confined PGL1 to an approximately 1.5 Mb region between D11S1986 and D11S1347, and showed identity-by-descent sharing for a group of American PGL families. Received: 2 November 1998 / Accepted: 21 December 1998  相似文献   

14.
15.
DiGeorge syndrome is a human developmental field defect with the pathological features of an abnormality of embryogenesis at 4 to 6 weeks of gestation. Cytogenetic analyses of patients have revealed a number of instances of monosomy 22q11-pter in this condition. We have analyzed 52 DNA markers that map to 22q11-pter and have found 27 that are deleted in DiGeorge syndrome patients with known monosomy for part of this region and that are duplicated in patients with the der22 syndrome. The set of clones mapping to the DiGeorge region was further assigned to a proximal or a distal location within the deletion.  相似文献   

16.
17.
18.
Summary We have previously identified and regionally localized 195 chromosome-22-specific DNA markers. We now report restriction fragment length polymorphisms detected by 9 phage markers mapped to 22q11-q12, two cosmid clones mapped to 22q12-q13 and one plasmid mapped to 22q13-qter. These markers may be useful tools for mapping disease genes such as the NF2 locus, on chromosome 22.  相似文献   

19.
We describe the relative ordering, by fluorescence in situ hybridization, of cosmid loci and translocation breakpoints in the DiGeorge syndrome (DGS) critical region of chromosome 22. This physical map enables us to define a large region, commonly deleted in a majority of affected patients, and the smallest deleted region which, when lost, is sufficient to produce DGS. In four instances, a similar large deleted region is observed in a familial context. In these pedigrees, the deletion is encountered in one parent with mild features of the disease.  相似文献   

20.
Summary We were able to refine the chromosomal position of two existing marker loci, using an extended chromosome 21 somatic cell hybrid panel. The locus D21S26 mapped in the region 21q11.2–q21.1, and the locus D21S24 in 21q22.1–q22.2. Physical and genetic analysis indicated that D21S26 is tightly linked to D21S13 and D21S16, two markers previously linked to familial Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号