首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(10):1206-1217
Abstract

Excessive expansion of white adipose tissue leads to hypoxia which is considered as a key factor responsible for adipose tissue dysfunction in obesity. Hypoxia induces inflammation, insulin resistance, and other obesity related complications. So the hypoxia-signalling pathway is expected to provide a new target for the treatment of obesity-associated complications. Inhibition or downregulation of the HIF-1 pathway could be an effective target for the treatment of obesity related hypoxia. In the present study, we evaluated the effect of hypoxia on functions of 3T3-L1 adipocytes emphasising on oxidative stress, antioxidant status, inflammation and mitochondrial functions. We have also evaluated the protective role of bilobalide, a bioactive from Gingko biloba, on hypoxia induced alterations. The results revealed that hypoxia significantly altered all the vital parameters of adipocyte biology like HIF-1α expression (103.47% ↑), lactate and glycerol release (184.34% and 69.1% ↑, respectively), reactive oxygen species (ROS) production (432.53% ↑), lipid and protein oxidation (376.6% and 566.6% ↑, respectively), reduction in antioxidant enzymes (superoxide dismutase and catalase) status, secretion of inflammatory markers (TNF-α, IL-6, IL-1β and IFN-γ) and mitochondrial functions (mitochondrial mass, membrane potential, permeability transition pore integrity, superoxide generation). Bilobalide significantly protected adipocytes from adverse effects of hypoxia in a dose-dependent manner by attenuating oxidative stress, inflammation and protecting mitochondria. Acriflavine (HIF-1 inhibitor) was used as positive control. On the basis of this study, a detailed investigation is needed to delineate the mechanism of action of bilobalide to develop it as therapeutic target for obesity.  相似文献   

2.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

3.
4.
An impaired capacity of adipose tissue expansion leads to adipocyte hypertrophy, inflammation and insulin resistance (IR) under positive energy balance. We previously showed that a grape pomace extract, rich in flavonoids including quercetin (Q), attenuates adipose hypertrophy. This study investigated whether dietary Q supplementation promotes adipogenesis in the epididymal white adipose tissue (eWAT) of rats consuming a high-fat diet, characterizing key adipogenic regulators in 3T3-L1 pre-adipocytes. Consumption of a high-fat diet for 6 weeks caused IR, increased plasma TNFα concentrations, eWAT weight, adipocyte size and the eWAT/brown adipose tissue (BAT) ratio. These changes were accompanied by decreased levels of proteins involved in angiogenesis, VEGF-A and its receptor 2 (VEGF-R2), and of two central adipogenic regulators, i.e. PPARγ and C/EBPα, and proteins involved in mature adipocyte formation, i.e. fatty acid synthase (FAS) and adiponectin. Q significantly reduced adipocyte size and enhanced angiogenesis and adipogenesis without changes in eWAT weight and attenuated systemic IR and inflammation. In addition, high-fat diet consumption increased eWAT hypoxia inducible factor-1 alpha (HIF-1α) levels and those of proteins involved in adipose inflammation (TLR-4, CD68, MCP-1, JNK) and activation of endoplasmic reticulum (ER) stress, i.e. ATF-6 and XBP-1. Q mitigated all these events. Q and quercetin 3-glucoronide prevented TNFα-mediated downregulation of adipogenesis during 3T3-L1 pre-adipocytes early differentiation. Together, Q capacity to promote a healthy adipose expansion enhancing angiogenesis and adipogenesis may contribute to reduced adipose hypertrophy, inflammation and IR. Consumption of diets rich in Q could be useful to counteract the adverse effects of high-fat diet-induced adipose dysfunction.  相似文献   

5.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

6.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of systemic glucose and insulin homeostasis; however, its exact role in adipocytes is poorly understood. This study was to elucidate the role of PTP1B in adipocyte differentiation and its implication in obesity. During differentiation of 3T3-L1 white preadipocytes, PTP1B decreased progressively with adipocyte maturation. Lentivirus-mediated PTP1B overexpression in preadipocytes delayed adipocyte differentiation, shown as lack of mature adipocytes, low level of lipid accumulation, and down-regulation of main markers (PPARγ2, SREBP-1c, FAS and LPL). In contrast, lentivirus-mediated PTP1B knockdown accelerated adipocyte differentiation, demonstrated as full of mature adipocytes, high level of lipid accumulation, and up-regulation of main markers. Dominant-negative inhibition on endogenous PTP1B by lentivirus-mediated overexpression of PTP1B double mutant in Tyr-46 and Asp-181 residues (LV-D/A-Y/F) also stimulated adipogenesis, more efficient than PTP1B knockdown. Diet-induced obesity mice exhibited an up-regulation of PTP1B and TNFα accompanied by a down-regulation of PPARγ2 in white adipose tissue. TNFα recombinant protein impeded PTP1B reduction and inhibited adipocyte differentiation in vitro; this inhibitory effect was prevented by LV-D/A-Y/F. Moreover, PTP1B inhibitor treatment improved adipogenesis and suppressed TNFα in adipose tissue of obese mice. All together, PTP1B negatively regulates adipocyte development and may mediate TNFα action to impair adipocyte differentiation in obesity. Our study provides novel evidence for the importance of PTP1B in obesity and for the potential application of PTP1B inhibitors.  相似文献   

7.
8.
Dysfunction of adipocytes and adipose tissue is a primary defect in obesity and obesity-associated metabolic diseases. Interferon regulatory factor 3 (IRF3) has been implicated in adipogenesis. However, the role of IRF3 in obesity and obesity-associated disorders remains unclear. Here, we show that IRF3 expression in human adipose tissues is positively associated with insulin sensitivity and negatively associated with type 2 diabetes. In mouse pre-adipocytes, deficiency of IRF3 results in increased expression of PPARγ and PPARγ-mediated adipogenic genes, leading to increased adipogenesis and altered adipocyte functionality. The IRF3 knockout (KO) mice develop obesity, insulin resistance, glucose intolerance, and eventually type 2 diabetes with aging, which is associated with the development of white adipose tissue (WAT) inflammation. Increased macrophage accumulation with M1 phenotype which is due to the loss of IFNβ-mediated IL-10 expression is observed in WAT of the KO mice compared to that in wild-type mice. Bone-marrow reconstitution experiments demonstrate that the nonhematopoietic cells are the primary contributors to the development of obesity and both hematopoietic and nonhematopoietic cells contribute to the development of obesity-related complications in IRF3 KO mice. This study demonstrates that IRF3 regulates the biology of multiple cell types including adipocytes and macrophages to prevent the development of obesity and obesity-related complications and hence, could be a potential target for therapeutic interventions for the prevention and treatment of obesity-associated metabolic disorders.Subject terms: Interferons, Preclinical research  相似文献   

9.
Plasma acutephase protein pentraxin 3 (PTX3) concentration is dysregulated in human obesity and metabolic syndrome. Here, we explore its relationship with insulin secretion and sensitivity, obesity markers, and adipose tissue PTX3 gene expression. Plasma PTX3 protein levels were analyzed in a cohort composed of 27 lean [body mass index (BMI) ≤ 25 kg/m(2)] and 48 overweight (BMI 25-30 kg/m(2)) men (cohort 1). In this cohort, plasma PTX3 was negatively correlated with fasting triglyceride levels and insulin secretion after intravenous and oral glucose administration. Plasma PTX3 protein and PTX3 gene expression in visceral (VAT) and subcutaneous (SAT) whole adipose tissue and adipocyte and stromovascular fractions were analyzed in cohort 2, which was composed of 19 lean, 28 overweight, and 15 obese subjects (BMI >30 kg/m(2)). An inverse association with body weight and waist/hip ratio was observed in cohort 2. In VAT depots, PTX3 mRNA levels were higher in subjects with BMI >25 kg/m(2) than in lean subjects, positively correlated with IL-1β mRNA levels, and higher in the adipocyte than stromovascular fraction. Human preadipocyte SGBS cell line was used to study PTX3 production in response to factors that obesity entails. In SGBS adipocytes, PTX3 gene expression was enhanced by IL-1β and TNFα but not IL-6 or insulin. In conclusion, the negative correlation between PTX3 and glucose-stimulated insulin secretion suggests a role for PTX3 in metabolic control. PTX3 gene expression is upregulated in VAT depots in obesity, despite lower plasma PTX3 protein, and by some proinflammatory cytokines in cultured adipocytes.  相似文献   

10.
11.
Preadipocyte factor-1 (Pref-1) is a secretory soluble protein, which exerts pleiotropic effects on maintenance of cancer stem cell characteristics and commitment of mesenchymal stem cell lineages by inhibiting adipogenesis. Observations that obesity renders the microenvironment of adipose tissues hypoxic and that hypoxia inhibits adipogenesis lead us to investigate whether hypoxia increases the expression of anti-adipogenic Pref-1 in preadipocytes, mature adipocytes, and adipose tissues from obese mouse. In 3T3-L1 preadipocytes, hypoxia induces Pref-1 by a hypoxia-inducible factor 1 (HIF-1)-dependent mechanism accompanied by increase in the levels of the active histone mark, acetylated H3K9/14 (H3K9/14Ac). Adipogenesis increased the levels of the heterochromatin histone mark, trimethylated H3K27 (H3K27me3), whereas it decreased the levels of H3K4me3 and H3K9/14Ac euchromatin marks of the mouse Pref-1 promoter. However, differently from preadipocytes, in mature adipocytes hypoxia failed to reverse the repressive epigenetic changes of Pref-1 promoter and to increase its expression. Short term (8 weeks) high fat diet (HFD) increased HIF-1α protein in subcutaneous and epididymal adipose tissues, but did not increase Pref-1 expression. Unlike in 3T3-L1 preadipocytes, HIF-1α did not increase Pref-1 expression in adipose tissues in which mature adipocytes constitute the main population. Interestingly, long term (35 weeks) HFD increased Pref-1 in serum but not in obese adipose tissues. This study suggests that Pref-1 is an endocrine factor which is synergistically increased by obesity and age.  相似文献   

12.
13.
14.
15.
Obesity is associated with a low-grade inflammation which is correlated with an increased secretion of pro-inflammatory cytokines and chemokines by adipose tissue, suspected to contribute to the development of insulin resistance. Because lycopene is mostly stored in adipose tissue and possesses anti-inflammatory properties, we hypothesize that lycopene could reduce the production of proinflammatory markers in adipose tissue. In agreement with this hypothesis, we observed a decrease of inflammatory markers such as IL-6, MCP-1 and IL-1β at both the mRNA and protein level when explants of epididymal adipose tissue from mice fed with a high-fat diet were incubated with lycopene ex vivo. The same effect was reproduced with explants of adipose tissue preincubated in lycopene and then subjected to TNFα stimulation. The contribution of adipocytes and preadipocytes was evaluated. In both preadipocytes and differentiated 3T3-L1 adipocytes, lycopene preincubation for 24 h decreased the TNFα-mediated induction of IL-6 and MCP-1. Finally, the same results were reproduced with human adipocyte primary cultures. The molecular mechanism was also studied. In transient transfections, a decrease of the luciferase gene reporter under control of NF-κB responsive element was observed for cells incubated in the presence of lycopene and TNFα compared to TNFα alone. The involvement of the NF-κB pathway was confirmed by the modulation of IKKα/β phosphorylation by lycopene.Altogether, these results showed for the first time a limiting effect of lycopene on adipose tissue proinflammatory cytokine and chemokine production. Such an effect could prevent or limit the prevalence of obesity-associated pathologies, such as insulin resistance.  相似文献   

16.
Adrenomedullin (ADM) and hypoxia-inducible factor-1α (HIF-1α) are important pro-proliferation genes in response to hypoxic stress. Although it was reported that ADM is a target gene for HIF-1, recent studies also showed that ADM regulates HIF-1 expression and its activity; however, the mechanism of action remains unknown. Two stable human endothelial cell lines with HIF-1α knockdown by hy926-siHIF-1α or HMEC-siHIF-1α were established. mRNA and protein expression of ADM and HIF-1α in EA.hy926 and HMEC1 cells were examined under hypoxic stress. Upon ADM treatment, cell proliferation was investigated and the expression profiles of HIF-1α and its target genes (VEGF, PFKP, PGK1, and AK1) were examined. Furthermore, the proline hydroxylase (PHD) mRNA level and its activity were investigated. We observed that mRNA and protein expression of ADM in hypoxia are earlier events than HIF-1α in EA.hy926 and HMEC1 cells. ADM-promoted cell proliferation of endothelial cells, which was HIF-1α dependent. We also found that ADM up-regulated the mRNA and protein expressions of HIF-1α- and HIF-1-targeted genes, and ADM up-regulated the protein expressions of HIF-1α through down-regulation of PHD mRNA expression and PHD activity.  相似文献   

17.
18.
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).  相似文献   

19.
Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号