首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

2.
Temple HJ  Hoffman JI  Amos W 《Molecular ecology》2006,15(11):3449-3458
Dispersal is a fundamental process influencing evolution, social behaviour, and the long-term persistence of populations. We use both observational and genetic data to investigate dispersal, kin-clustering and intergroup relatedness in the white-breasted thrasher, Ramphocinclus brachyurus, a cooperatively breeding bird that is globally endangered. Mark-resighting data suggested sex-biased dispersal, with females dispersing over greater distances while males remained philopatric. Accordingly, spatial autocorrelation analysis showed highly significant fine-scale genetic structure among males, but not among females. This fine-scale genetic structuring of the male population resulted in very high levels of relatedness between dominant males at neighbouring nests, similar to that seen within cooperative groups in many species where kin selection is cited as a cause of cooperation. By implication, between-group as well as within-group cooperation may be important, potentially creating a feedback loop in which short-distance dispersal by males leads to the formation of male kin clusters that in turn facilitate nepotistic interactions and favour further local recruitment. The strength of spatial autocorrelation, as measured by the autocorrelation coefficient, r, was approximately two to three times greater than that reported in previous studies of animals. Relatively short dispersal distances by both males and females may have a negative impact on the white-breasted thrasher's ability to colonize new areas, and may influence the long-term persistence of isolated populations. This should be taken into account when designating protected areas or selecting sites for habitat restoration.  相似文献   

3.
Banks SC  Peakall R 《Molecular ecology》2012,21(9):2092-2105
Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals.  相似文献   

4.
The spatial extent of Sitka black-tailed deer (Odocoileus hemionus sitkensis) populations below the regional scale is relatively unknown, as is dispersal between populations. Here, we use noninvasive samples to genotype 221 Sitka black-tailed deer in three watersheds on Prince of Wales Island, Alaska, separated by a maximum of 44 km, using traditional and spatial genetic approaches. We find that despite geographic proximity, multiple lines of evidence suggest fine-scale genetic structure among the three study sites. The 2 most geographically distant watersheds differed significantly in genetic composition, suggesting an isolation-by-distance pattern. Within study sites, deer exhibited spatial genetic structure within a radius of 1,000 m. Based on a reduced sample of known-sex individuals, females exhibited positive spatial genetic structure within a radius of 500 m but males showed no structure. Moreover, females were more likely to be related to their 5 nearest female neighbors, regardless of distance, than were males. Evidence indicates dispersal by both sexes although it may be more common, or dispersal distances are greater, in males. Nonetheless, analysis of assignment indices and comparison of sex-specific correlograms found no evidence of sex-biased dispersal between watersheds. Patterns of spatial relatedness and connectivity suggest limited dispersal among Sitka black-tailed deer, creating genetic structure on a fine spatial scale, perhaps as small as the watershed.  相似文献   

5.
Fine-scale genetic structuring is influenced by a variety of ecological factors and can directly affect the evolutionary dynamics of plant populations by influencing effective population size and patterns of viability selection. In many plant species, genetic structuring within populations may result from highly localized patterns of seed dispersal around maternal plants or by the correlated dispersal and recruitment of siblings from the same fruit. This fine-scale genetic structuring may be enhanced if female parents vary significantly in their reproductive success. To test these hypotheses, we used genetic data from 17 allozyme loci and a maximum-likelihood, ‘maternity-analysis’ model to estimate individual female fertilities for maternal trees across a large number of naturally established seedlings and saplings in two populations of Gleditsia triacanthos L. (Leguminosae). Maximum-likelihood fertility estimates showed that the three highest fertility females accounted for 58% of the 313 progeny at the first site and 46% of the 651 progeny at the second site, whereas 18 of 35 and 16 of 34 females, respectively, had fertility estimates that did not exceed 1%. Additional analyses of the second site found individual female fertility to vary significantly both within and among juvenile age classes. Female fertility at the first site was weakly correlated with maternal tree size and spatial location relative to the open, old-field portions of the population, where the great majority of seedlings and saplings were growing, but no such correlations were found at the second site. Estimates of realized seed dispersal distances indicated that dispersal was highly localized at the first site, but was nearly random at the second site, possibly reflecting differences between the two sites in the behaviour of animal dispersers. The combined estimates of seed dispersal patterns and fertility variation are sufficient to explain previously described patterns of significant fine-scale spatial genetic structure in these two populations. In general, our results demonstrate that effective seed dispersal distributions may vary significantly from population to population of a species due to the unpredictable behaviour of secondary dispersers. Consequently, the effects of seed dispersal on realized fine-scale genetic structure may also be relatively unpredictable.  相似文献   

6.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

7.
Sex-biased dispersal is common in many animals, with male-biased dispersal often found in studies of mammals and reptiles, including interpretations of spatial genetic structure, ostensibly as a result of male–male competition and a lack of male parental care. Few studies of sex-biased dispersal have been conducted in turtles, but a handful of studies, in saltwater turtles and in terrestrial turtles, have detected male-biased dispersal as expected. We tested for sex-biased dispersal in the endangered freshwater turtle, the spotted turtle (Clemmys guttata) by investigating fine-scale genetic spatial structure of males and females. We found significant spatial genetic structure in both sexes, but the patterns mimicked each other. Both males and females typically had higher than expected relatedness at distances <25 km, and in many distance classes greater than 25 km, less than expected relatedness. Similar patterns were apparent whether we used only loci in Hardy–Weinberg equilibrium (n = 7) or also included loci with potential null alleles (n = 5). We conclude that, contrary to expectations, sex-biased dispersal is not occurring in this species, possibly related to the reverse sexual dimorphism in this species, with females having brighter colors. We did, however, detect significant spatial genetic structure in males and females, separate and combined, showing philopatry within a genetic patch size of <25 km in C. guttata, which is concerning for an endangered species whose populations are often separated by distances greater than the genetic patch size.  相似文献   

8.
Coenagrion mercuriale (Charpentier) (Odonata: Zygoptera) is one of Europe's most threatened damselflies and is listed in the European Habitats directive. We combined an intensive mark-release-recapture (MRR) study with a microsatellite-based genetic analysis for C. mercuriale from the Itchen Valley, UK, as part of an effort to understand the dispersal characteristics of this protected species. MRR data indicate that adult damselflies are highly sedentary, with only a low frequency of interpatch movement that is predominantly to neighbouring sites. This restricted dispersal leads to significant genetic differentiation throughout most of the Itchen Valley, except between areas of continuous habitat, and isolation by distance (IBD), even though the core populations are separated by less than 10 km. An urban area separating some sites had a strong effect on the spatial genetic structure. Average pairwise relatedness between individual damselflies is positive at short distances, reflecting fine-scale genetic clustering and IBD both within- and between-habitat patches. Damselflies from a fragmented habitat have higher average kinship than those from a large continuous population, probably because of poorer dispersal and localized breeding in the former. Although indirect estimates of gene flow must be interpreted with caution, it is encouraging that our results indicate that the spatial pattern of genetic variation matches closely with that expected from direct observations of movement. These data are further discussed with respect to possible barriers to dispersal within the study site and the ecology and conservation of C. mercuriale. To our knowledge, this is the first report of fine-scale genetic structuring in any zygopteran species.  相似文献   

9.
Several recent studies have shown that amphibian populations may exhibit high genetic subdivision in areas with recent fragmentation and urban development. Less is known about the potential for genetic differentiation in continuous habitats. We studied genetic differentiation of red-backed salamanders (Plethodon cinereus) across a 2-km transect through continuous forest in Virginia, USA. Mark-recapture studies suggest very little dispersal for this species, whereas homing experiments and post-Pleistocene range expansion both suggest greater dispersal abilities. We used six microsatellite loci to examine genetic population structure and differentiation between eight subpopulations of red-backed salamanders at distances from 200 m to 2 km. We also used several methods to extrapolate dispersal frequencies and test for sex-biased dispersal. We found small, but detectable differentiation among populations, even at distances as small as 200 m. Differentiation was closely correlated with distance and both Mantel tests and assignment tests were consistent with an isolation-by-distance model for the population. Extrapolations of intergenerational variance in spatial position (sigma(2)<15 m(2)) and pair-wise dispersal frequencies (4 Nm < 25 for plots separated by 300 m) both suggest limited gene flow. Additionally, tests for sex-biased dispersal imply that dispersal frequency is similarly low for both sexes. We suggest that these low levels of gene flow and the infrequent dispersal observed in mark-recapture studies may be reconciled with homing ability and range expansion if dispersing animals rarely succeed in breeding in saturated habitats, if dispersal is flexible depending on the availability of habitat, or if dispersal frequency varies across the geographic range of red-backed salamanders.  相似文献   

10.
Several recent studies have found amphibian populations to be genetically highly structured over rather short geographical distances, and that the rate of genetically effective dispersal may differ between the sexes. However, apart from the common frog ( Rana temporaria ) little is known about the genetic structuring and sex-biased dispersal in northern European amphibians. We investigated the patterns of genetic diversity and differentiation within and among Scandinavian populations of the moor frog ( Rana arvalis ) using microsatellite markers. The genetic diversity within local R. arvalis populations was not a simple linear negative function of latitude but a convex one: genetic diversity peaked in mid-latitude populations, and declined thereafter dramatically towards the north. The average degree of genetic differentiation among populations ( F ST = 0.14) was lower than that observed for the common frog ( F ST = 0.21), though the pattern of isolation by distance was similar for both species. Contrary to common frogs, no evidence for female-biased dispersal was found. The results reinforce the view that amphibian populations are—in general—highly structured over relatively small geographical distances, even in comparatively recently colonized areas.  相似文献   

11.
The local resource competition hypothesis and the local mate competition hypothesis were developed based on avian and mammalian systems to explain sex-biased dispersal. Most avian species show a female bias in dispersal, ostensibly due to resource defence, and most mammals show a male bias, ostensibly due to male-male competition. These findings confound phylogeny with mating strategy; little is known about sex-biased dispersal in other taxa. Resource defence and male-male competition are both intense in Plethodon cinereus, a direct-developing salamander, so we tested whether sex-biased dispersal in this amphibian is consistent with the local resource competition hypothesis (female-biased) or the local mate competition hypothesis (male-biased). Using fine-scale genetic spatial autocorrelation analyses, we found that females were philopatric, showing significant positive genetic structure in the shortest distance classes, with stronger patterns apparent when only territorial females were tested. Males showed no spatial genetic structure over the shortest distances. Mark-recapture observations of P. cinereus over 5 years were consistent with the genetic data: males dispersed farther than females during natal dispersal and 44% of females were recaptured within 1 m of their juvenile locations. We conclude that, in this population of a direct-developing amphibian, females are philopatric and dispersal is male-biased, consistent with the local mate competition hypothesis.  相似文献   

12.
Castanea squinii Dode,an endemic tree widely distributed in China,plays an important role both in chestnut breeding and forest ecosystem function.The spatial genetic structure within and among populations is an important part of the evolutionary and ecological genetic dynamics of natural populations,and can provide insights into effective conservation of genetic resources.In the present study,the spatial genetic structure of a panmictic natural population of C.sequinii in the Dabie Mountain region was investigated using microsatellite markers.Nine prescreened microsatellite loci generated 29-33 alleles each,and were used for spatial autocorrelation analysis.Based on Moran's I coefficient,a panmictic population of C.sequinii in the Dabie Mountain region was found to be lacking a spatial genetic structure.These results suggest that a high pollen-mediated gene flow among subpopulations counteract genetic drift and/or genetic differentiation and plays an important role in maintaining a random and panmictic population structure in C.sequinii populations.Further,a spatial genetic structure was detected in each subpopulation's scale (0.228 km),with all three subpopulations showing significant fine-scale structure.The genetic variation was found to be nonrandomly distributed within 61 m in each subpopulation (Moran's I positive values).Although Moran's I values varied among the different subpopulations,Moran's I in all the three subpopulations reached the expected values with an increase in distances,suggesting a generally patchy distribution in the subpopulations.The fine-scale structure seems to reflect restricted seed dispersal and microenvironment selection in C.sequinii.These results have important implications for understanding the evolutionary history and ecological process of the natural population of C.sequinii and provide baseline data for formulating a conservation strategy of Castanea species.  相似文献   

13.
Important changes in genetic relatedness may occur at extremely small scales in benthic invertebrates, providing key information about structuring processes in populations of these organisms. We performed a small-scale study of the population structure of the sponge Crambe crambe, in which 177 individuals from the same rocky wall (interindividual distances from 0 to 7 m) were genotyped using six microsatellite markers. 101 sponges had unique genotypes and the remaining 76 individuals formed 24 groups of sponges sharing genotypes (clones). Mean intraclone distances were found to be c. 20 cm. Spatial autocorrelation analyses showed a drastic decrease in genetic relatedness over the first 100 cm of distance. If the contribution of clonality to this pattern was eliminated, the trend was attenuated, but remained a marked one and was still significant within the first distance classes (30-40 cm). Estimated mean dispersal distances per generation were c. 35 cm, and neighbourhood sizes were estimated at c. 33 sponges. Genetic similarities with sponges of the same locality, or from other Mediterranean localities, were within the same range as those found in sponges 2-7 m apart. It is concluded that asexual reproduction plays an important role in structuring populations in this species. However, over and above the effects of clonality, a strong fine-scale genetic structure was present at distances in the range of tens of centimetres, probably as a result of short dispersal of larvae. This fine-scale genetic structure may be common in invertebrates with lecitotrophic larvae.  相似文献   

14.
An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.  相似文献   

15.
The Greater Bilby has shown a rapid decline in range during this century and now occupies only a small isolated area in south-western Queensland (QLD) and a larger, but mostly low-density area in the north-western deserts of the Northern Territory (NT) and Western Australia (WA). We have examined variation in the control region of mitochondrial DNA (mtDNA) and at nine microsatellite loci in order to investigate the extent of current and historical subdivision across the species range, and to provide a preliminary assessment of genetic structuring and mating system on a finer scale within the QLD population. Both mtDNA and microsatellite loci had substantial variation within and among populations, with mtDNA divergence being greater between QLD and NT than between NT and WA. The QLD population had two unique and divergent mtDNA lineages, but there was no evidence for strong phylogeographical structure across the range. The available evidence suggests that the bilby should be considered as a single Evolutionarily Significant Unit consisting of multiple Management Units. Augmentation of the remnant QLD population from the NT does not appear necessary at this stage, at least not on genetic grounds. Finer-scale analysis of microsatellite variation for two QLD colonies revealed a deficiency of heterozygotes and significantly greater relatedness within than between colonies. However, structuring was observed only for males; relatedness values for females did not depart from those expected under panmixia. Parentage exclusion analysis for one colony allowed the construction of a partial pedigree which indicated strong polygyny, with one male fathering all but one of the eight offspring assigned. The extent to which fine-scale genetic structuring and differences between sexes is due to sex-biased dispersal vs. effects of mating system remain to be determined.  相似文献   

16.
1.?Breeding with kin can reduce individual fitness through the deleterious effects of inbreeding depression. Inbreeding avoidance mechanisms are expected to have developed in most species, and especially in cooperatively breeding species where individuals may delay dispersal until long after sexual maturity. Such potential mechanisms include sex-biased dispersal and avoidance of kin known through associative learning. 2.?The investigation of inbreeding avoidance through dispersal dynamics can be enhanced by combining fine-scale population genetic structure data with detailed behavioural observations of wild populations. 3.?We investigate possible inbreeding avoidance in a wild population of cooperatively breeding southern pied babblers (Turdoides bicolor). A combination of genetic, geographic and observational data is used to examine fine-scale genetic structure, dispersal (including sex-biased dispersal) and inheritance of dominance in cooperatively breeding groups. 4.?Unusually, sex-bias in dispersal distance does not occur. Rather, individuals appear to avoid inbreeding through two routes. First, through dispersal itself: although both males and females disperse locally, they move outside the range within which genetically similar individuals are usually found, going twice as far from natal groups as from non-natal groups. Second, through avoidance of familiar group members as mates: individuals inherit a dominant position in the natal group only when an unrelated breeding partner is present. 5.?This study uses spatial genetic analyses to investigate inbreeding avoidance mechanisms in a cooperative breeder and shows that individuals of both sexes can avoid inbreeding through a dispersal distance mechanism. While it appears that dispersal allows most individuals to move beyond the range of closely related kin, matings may still occur between distant kin. Nevertheless, any costs of breeding with a distant relative may be outweighed by the benefits of local dispersal and the immense fitness gains available from attaining a breeding position.  相似文献   

17.
Fine-scale genetic structure within a population was analyzed for the myrmecochorous forest perennial Polygala reinii (Polygalaceae) using allozyme loci. In the analysis, two sampling plots were established to cover the isolated patchy distribution within the study population. Size and spatial structure were also examined for the plots to assess their interaction with the genetic structuring. Allozyme analysis based on 13 putative loci encoding 10 enzyme systems showed high genetic variation and low values of fixation indices at the two plots. Spatial autocorrelation analysis based on the multilocus coancestry coefficient (f ij ) revealed significant genetic structuring in both plots, suggesting limited gene-, especially seed-, dispersal within the population. The spatial structure within the plots, assessed by O-ring statistics, was characterized by the occurrence of spatial clustering of individuals within a few meters. In particular, the range of the spatial clustering roughly corresponded to that of the genetic structuring. While the size structure did not significantly differ between the plots, these results indicate that the fine-scale genetic structure reflects the formation of spatial clustering of related individuals within the population, partly due to the restricted ant-mediated seed dispersal in P. reinii.  相似文献   

18.
Unravelling relationships between dispersal and population structure requires considering the impacts of assumption violations of indirect gene flow models in a given system. We combined temporal, individual and coalescent-based analyses of microsatellite DNA variation to explore the general hypothesis that unequal effective population size (Ne), asymmetric gene flow (m) and nonrandom (sex-biased) individual dispersal had an important effect on spatiotemporal population structuring in lake-dwelling brook charr (Salvelinus fontinalis). This integrative examination shed light on the dichotomous structuring observed between an outlet and three tributary-spawning populations and their potential for adaptive divergence. It revealed further that finer tributary population structuring incongruent with drainage structure has been shaped by asymmetric m from one population with a large Ne towards two populations of smaller Ne. Gene flow among the tributaries was also mediated mainly by male-biased dispersal. However, longer distance dispersal from tributaries to the outflow was female-biased. Spatially dependent sex-biased dispersal may have contributed therefore to gene flow at different levels of population structuring. Our results demonstrate how dispersal and population structure may interrelate to produce spatial variation in intraspecific diversity, and are therefore relevant for conservation programmes seeking to define conservation units or predict recolonization rates of extirpated populations.  相似文献   

19.
Using genetic markers, we investigated the genetic structure of three clonal aquatic moss species, Calliergon megalophyllum Mikut., Fontinalis antipyretica Hedw. and F. hypnoides Hartm. on two scales: among populations in a connected lake system (large‐scale spatial genetic structure) and among individuals within populations (fine‐scale spatial genetic structure). Mean genetic diversities per population were 0.138, 0.247 and 0.271, respectively, and total diversities equalled 0.223, 0.385 and 0.421, respectively. Relative differentiation levels (FST values of 0.173, 0.280 and 0.142, respectively) were significant but showed that there is a moderate amount of gene flow taking place within the lake system connected with narrow streams. Bayesian STRUCTURE analysis provided some indication that the direction of water flow influences population genetic structuring in the studied aquatic mosses. We propose that dispersal leading to gene flow in C. megalophyllum, F. antipyretica and F. hypnoides takes place both along water via connecting streams and by animal vectors, such as waterfowl. Nevertheless, the slight genetic structuring pattern along the direction of water flow suggests that dispersal of shoots or their fragments along water is a means of dispersal in these mosses. The absence of sexual reproduction and spores may have caused the observed spatial genetic structure within populations, including aggregations of similar genotypes (clones or closely related genotypes) at short distances in populations otherwise showing an isolation by distance effect. Regardless of the results pointing to the dominance of vegetative propagation, it is impossible to completely rule out the potential role of rare long‐distance spore dispersal from areas where the species are fertile.  相似文献   

20.
祁彩虹  金则新  李钧敏 《生态学报》2011,31(18):5130-5137
采用空间自相关分析方法对浙江天台山亚热带常绿阔叶林优势种甜槠种群全部个体及不同年龄级个体的小尺度空间遗传结构进行了分析,以探讨甜槠种群内遗传变异的分布特征及其形成机制。根据11个ISSR引物所提供的多态位点,经GenAlEx 6软件计算地理坐标和遗传距离矩阵在10个距离等级下的空间自相关系数。在样地内,甜槠种群内个体在空间距离小于10 m时存在显著的正空间遗传结构,其X-轴截矩为9.945。甜槠种群的空间遗传结构与其种子短距离传播和广泛的花粉传播有关。Ⅰ年龄级、Ⅱ年龄级和III年龄级个体在空间距离小于10 m时存在显著的正空间遗传结构,其X-轴截矩分别为11.820、9.746和9.792。当距离等级为5 m时,其空间自相关系数r分别为0.068、0.054和0.070。Ⅳ年龄级个体在所有空间距离等级中均不存在显著的空间遗传结构。甜槠是多年生、长寿命植物,自疏作用是导致IV年龄级个体空间遗传结构消失的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号