首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Structural features of a regulatory nucleosome   总被引:9,自引:0,他引:9  
DNA sequences from the long terminal repeat of the mouse mammary tumor virus (MMTV-LTR) position nucleosomes both in vivo and in vitro. Here, were present chromatin reconstitution experiments showing that MMTV-LTR sequences from -236 to +204 accommodate two histone octamers in positions compatible with the in vivo data. This positioning is not influenced by the length of the DNA fragment and occurs in linear as well as in closed circular DNA molecules. MMTV-LTR DNA sequences show an intrinsic bendability that closely resembles its wrapping around the histone octamer. We propose that bendability is responsible for the observed rotational nucleosome positioning. Translational nucleosome positioning seems also to be determined by the DNA sequence. These data, along with the results from reconstitution experiments with insertion mutants, support a modular model of nucleosome phasing on MMTV-LTR, where the actual positioning of the histone octamer results from the additive effect of multiple features of the DNA sequence.  相似文献   

4.
5.
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.  相似文献   

6.
7.
The molecular basis underlying the sequence-specific positioning of nucleosomes on DNA was investigated. We previously showed that histone octamers occupy multiple specific positions on mouse satellite DNA in vivo and have now reconstituted the 234 bp mouse satellite repeat unit with pure core histones into mononucleosomes. Histones from mouse liver or chicken erythrocytes bind to the DNA in multiple precisely defined frames in perfect phase with a diverged 9 bp subrepeat of the satellite DNA. This is the first time that nucleosome positions on a DNA in vivo have been compared to those found on the same DNA by in vitro reconstitution. Most of the nucleosomes occupy identical positions in vivo and in vitro. There are, however, some characteristic differences. We conclude that sequence-dependent histone-DNA interactions play a decisive role in the positioning of nucleosomes in vivo, but that the nucleosome locations in native chromatin are subject to additional constraints.  相似文献   

8.

Background

Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted.

Methodology/Principal Findings

We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps.

Conclusions/Significance

Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.  相似文献   

9.
10.
We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.  相似文献   

11.
Using high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed.  相似文献   

12.
The dinucleosome is an informative unit for analysis of the higher-order chromatin structure. DNA fragments forming stable dinucleosomes were screened from a dinucleosome DNA library after the reconstitution of nucleosomes in vitro and digestion with micrococcal nuclease. Reconstituted dinucleosomes showed a diversity of sensitivity to micrococcal nuclease, suggesting that the biochemical stability of a dinucleosome depends, in part, on the DNA fragments. The DNA fragments after the screening were classified into three groups represented by clones bf10, af14 and af32 according to the sensitivity to micrococcal nuclease. Mapping of the nucleosome boundaries by Southern blotting of the DNA after restriction digestion and by primer extension analysis showed that each nucleosome position of clone af32 was fixed. Analysis of reconstituted dinucleosomes using mutant DNA fragments of clone af32 revealed a unique property characteristic of a key nucleosome, given that the replacement of a DNA fragment corresponding to the right nucleosome position resulted in marked sensitivity to micrococcal nuclease, whereas the replacement of the other nucleosome fragment had almost no effect on sensitivity as compared to the original af32 construct. The mutant construct in which the right nucleosome was removed showed multiple nucleosome phases, suggesting that the right nucleosome stabilized first each mononucleosome and then the dinucleosome. An oligonucleotide bending assay revealed that the DNA fragment in the right nucleosome included curved DNA, suggesting that the positioning activity of the nucleosome was attributed to its DNA structure. These results suggest that information for forming stable dinucleosome is embedded in the genomic DNA and that a further characterization of the key nucleosome is useful for understanding the building up of the chromatin structure.  相似文献   

13.
14.
15.
DNA sequence is an important determinant of the positioning, stability, and activity of nucleosomes, yet the molecular basis of these effects remains elusive. A "consensus DNA sequence" for nucleosome positioning has not been reported and, while certain DNA sequence preferences or motifs for nucleosome positioning have been discovered, how they function is not known. Here, we report that an unexpected observation concerning the reassembly of nucleosomes during salt gradient dialysis has allowed a breakthrough in our efforts to identify the nucleosomal locations of the DNA sequence motifs that dominate histone-DNA interactions and nucleosome positioning. We conclude that a previous selection experiment for high-affinity, nucleosome-forming DNA sequences exerted selective pressure chiefly on the central stretch of the nucleosomal DNA. This observation implies that algorithms for aligning the selected DNA sequences should seek to optimize the alignment over much less than the full 147 bp of nucleosomal DNA. A new alignment calculation implemented these ideas and successfully aligned 19 of the 41 sequences in a non-redundant database of selected high-affinity, nucleosome-positioning sequences. The resulting alignment reveals strong conservation of several stretches within a central 71 bp of the nucleosomal DNA. The alignment further reveals an inherent palindromic symmetry in the selected DNAs; it makes testable predictions of nucleosome positioning on the aligned sequences and for the creation of new positioning sequences, both of which are upheld experimentally; and it suggests new signals that may be important in translational nucleosome positioning.  相似文献   

16.
An extensive set of analyses of the yeast PHO5 gene, mostly performed in vivo, has made this gene a model for the role of chromatin structure in gene regulation. In the repressed state, the PHO5 promoter shows a characteristic chromatin organization with four positioned nucleosomes and a short hypersensitive site. So far the basis for this nucleosome positioning has remained unresolved. We have therefore decided to complement the in vivo studies by an in vitro approach. As a first step, we have asked whether the characteristic PHO5 promoter chromatin structure depends on the cellular context including replication or higher order nuclear chromatin organization or whether it can be reconstituted in vitro in a cell-free system. To this end we have established an in vitro chromatin assembly system based on yeast extracts. It is capable of generating extensive regular nucleosomal arrays with physiological spacing. Assembly requires supplementation with exogenous histones and is dependent on energy leading to chromatin with dynamic properties due to ATP-dependent activities of the extract. Using the PHO5 promoter sequence as template in this replication independent system, we obtain a nucleosomal pattern over the PHO5 promoter region that is very similar to the in vivo pattern of the repressed state. This shows that the chromatin structure at the PHO5 promoter represents a self-organizing system in cell-free yeast extracts and provides a promising substrate for in vitro studies with a direct in vivo correlate.  相似文献   

17.
Nucleosome positioning signals embedded within the DNA sequence have the potential to influence the detailed structure of the higher-order chromatin fibre. In two previous studies of long stretches of DNA, encompassing the chicken beta-globin and ovine beta-lactoglobulin genes, respectively, we mapped the relative affinity of every site for the core histone octamer. In both cases a periodic arrangement of the in vitro positioning sites suggests that they might influence the folding of a nucleosome chain into higher-order structure; this hypothesis was borne out in the case of the beta-lactoglobulin gene, where the distribution of the in vitro positioning sites is related to the positions nucleosomes actually occupy in sheep liver cells. Here, we have exploited the in vitro nucleosome positioning datasets to simulate nucleosomal organisation using in silico approaches. We use the high-resolution, quantitative positioning maps to define a one-dimensional positioning energy lattice, which can be populated with a defined number of nucleosomes. Monte Carlo techniques are employed to simulate the behaviour of the model at equilibrium to produce a set of configurations, which provide a probability-based occupancy map. Employing a variety of techniques we show that the occupancy maps are a sensitive function of the histone octamer density (nucleosome repeat length) and find that a minimal change in this property can produce dramatic localised changes in structure. Although simulations generally give rise to regular periodic nucleosomal arrangements, they often show octamer density-dependent discontinuities, which tend to co-localise with sequences that adopt distinctive chromatin structure in vivo. Furthermore, the overall organisation of simulated chromatin structures are more closely related to the situation in vivo than is the original in vitro positioning data, particularly at a nucleosome density corresponding to the in vivo state. Although our model is simplified, we argue that it provides a unique insight into the influence that DNA sequence can have in determining chromatin structure and could serve as a useful basis for the incorporation of other parameters.  相似文献   

18.
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.  相似文献   

19.
A key component in the regulation of V(D)J recombination is control of the accessibility of RAG proteins to recombination signal sequences (RSS). Nucleosomes are known to inhibit this accessibility. We show here that the signal sequence itself represses accessibility by causing nucleosome positioning over the RSS. This positioning is mediated, in vitro and in vivo, by the conserved nonamer of the RSS. Consistent with this strong positioning, nucleosomes at RSSs are resistant to remodelling by nucleosome sliding. In vivo we find that consensus RSSs are preferentially protected, whereas those that lack a consensus nonamer, including some cryptic RSSs, fail to position nucleosomes. Decreased protection of these non-consensus RSSs correlates with their increased use in recombination assays. We therefore suggest that nucleosome positioning by RSSs provides a previously unanticipated level of protection and regulation of V(D)J recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号