首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

2.
During apoptosis the pro-death Bcl-2 family members Bax and Bak induce mitochondrial outer membrane permeabilization (MOMP) to mediate cell death. Recently, it was shown that Bax and Bak are also required for mitochondrial permeability transition pore (MPTP)-dependent necrosis, where, in their non-oligomeric state, they enhance permeability characteristics of the outer mitochondrial membrane. Necroptosis is another form of regulated necrosis involving the death receptors and receptor interacting protein kinases (RIP proteins, by Ripk genes). Here, we show cells or mice deficient for Bax/Bak or cyclophilin D, a protein that regulates MPTP opening, are resistant to cell death induced by necroptotic mediators. We show that Bax/Bak oligomerization is required for necroptotic cell death and that this oligomerization reinforces MPTP opening. Mechanistically, we observe mixed lineage kinase domain-like (MLKL) protein and cofilin-1 translocation to the mitochondria following necroptosis induction, while expression of the mitochondrial matrix isoform of the antiapoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), is significantly reduced. Some of these effects are lost with necroptosis inhibition in Bax/Bak1 double null, Ppif-/-, or Ripk3-/- fibroblasts. Hence, downstream mechanisms of cell death induced by necroptotic stimuli utilize both Bax/Bak to generate apoptotic pores in the outer mitochondrial membrane as well as MPTP opening in association with known mitochondrial death modifying proteins.  相似文献   

3.
目的:观察蛇床子素(osthole)对人骨肉瘤细胞SAOS-2增殖和凋亡的影响及潜在的调控机制。方法:采用MTT法、TUNEL染色技术和流式细胞术检测不同浓度蛇床子素对骨肉瘤细胞凋亡的影响;Western blot检测蛇床子素对骨肉瘤细胞中与细胞凋亡密切相关的蛋白(Bax、Bcl-2)的变化。结果:蛇床子素作用于SAOS-2细胞后,MTT结果显示SAOS-2细胞的活力受到明显抑制,且与蛇床子素浓度和时间相关;Western blot结果显示细胞中的促凋亡蛋白Bax表达上调,抗凋亡蛋白Bcl-2表达明显减弱,且呈剂量依赖性。结论:蛇床子素可显著抑制人骨肉瘤细胞的增殖且促进其凋亡的作用,可能与上调凋亡蛋白Bax和下调抗凋亡蛋白Bcl-2的表达有关。  相似文献   

4.
Collinin, which was isolated from the leaves of Zanthoxylum schinifolium, could exert cytotoxic effect on various human tumor cells with IC50 values in the range of 38.1–111.6 μM, whereas the IC50 value for human normal mammary epithelial MCF-10A cells was 124.4 μM. To examine the contribution of apoptosis to the cytotoxicity of collinin toward tumor cells, collinin-induced apoptotic events of Jurkat T cells transfected with vector (JT/Neo) were compared with those of Jurkat T cells transfected with Bcl-2 gene (JT/Bcl-2). Treatment of JT/Neo cells with collinin (30–60 μM) resulted in induction of sub-G1 peak representing apoptotic cells along with activation of Bak and Bax, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -3, -8, and -7, degradation of PARP, and DNA fragmentation dose-dependently, but these apoptotic events were abrogated by overexpression of Bcl-2, which could prevent the induced activation of Bak and Bax, and subsequent mitochondrial damage. Under these conditions, necrosis was not accompanied. Pretreatment of JT/Neo cells with the pan-caspase inhibitor z-VAD-fmk completely blocked collinin-induced apoptotic sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak activation and Δψm loss. Neither FADD-deficiency nor caspase-8-deficiency affected the susceptibility of Jurkat T cells to collinin-induced cytotoxicity and apoptotic cell death. These results demonstrate that the apoptogenic activity of collinin was mediated by the intrinsic mitochondrial apoptotic pathway which was preceded by activation of pro-apoptotic multidomain Bcl-2 family members Bak and Bax, mitochondrial damage, and resultant activation of caspase cascade, leading to PARP degradation, which could be regulated by Bcl-2.  相似文献   

5.
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.  相似文献   

6.
High dietary intakes and high blood levels of β-carotene are associated with a decreased incidence of various cancers. The anticancer effect of β-carotene is related to its pro-oxidant activity. DNA repair Ku proteins, as a heterodimer of Ku70 and Ku80, play a crucial role in DNA double-strand break repair. Reductions in Ku70/80 contribute to apoptosis. Previously, we showed that reactive oxygen species (ROS) activate caspase-3 which induces degradation of Ku proteins. In the present study, we investigated the mechanism of β-carotene-induced apoptosis of gastric cancer AGS cells by determining cell viability, DNA fragmentation, apoptotic indices (increases in cytochrome c and Bax, decrease in Bcl-2), ROS levels, mitochondrial membrane potential, caspase-3 activity, Ku70/80 levels, and Ku-DNA-binding activity of the cells treated with or without antioxidant N-acetyl cysteine and caspase-3 inhibitor z-DEVED-fmk. As a result, β-carotene induced apoptosis (decrease in cell viability, increases in DNA fragmentation and apoptotic indices) and caspase-3 activation, but decreased Ku70/80 levels and Ku-DNA-binding activity. β-Carotene-induced alterations (increase in caspase-3 activity, decrease in Ku proteins) and apoptosis were inhibited by N-acetyl cysteine and z-DEVED-fmk. Increment of intracellular and mitochondrial ROS levels and loss of mitochondrial membrane potential were suppressed by N-acetyl cysteine, but not by z-DEVED-fmk in β-carotene-treated cells. Therefore, β-carotene-induced increases in ROS and caspase-3 activity may lead to reduction of Ku70/80 levels, which results in apoptosis in gastric cancer cells. Loss of Ku proteins might be the underlying mechanism for β-carotene-induced apoptosis in gastric cancer cells.  相似文献   

7.
We investigated the effects of AT-101/cisplatin combination treatment on the expression levels of apoptotic proteins and epigenetic events such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzyme activities in OVCAR-3 and MDAH-2774 ovarian cancer cells. XTT cell viability assay was used to evaluate cytotoxicity. For showing apoptosis, both DNA Fragmentation and caspase 3/7 activity measurements were performed. The expression levels of apoptotic proteins were assessed by human apoptosis antibody array. DNMT and HDAC activities were evaluated by ELISA assay and mRNA levels of DNMT1 and HDAC1 genes were quantified by qRT-PCR. Combination of AT-101/cisplatin resulted in strong synergistic cytotoxicity and apoptosis in human ovarian cancer cells. Combination treatment reduced some pivotal anti-apoptotic proteins such as Bcl-2, HIF-1A, cIAP-1, XIAP in OVCAR-3 cells, whereas p21, Bcl-2, cIAP-1, HSP27, Clusterin and XIAP in MDAH-2774 cells. Among the pro-apoptotic proteins, Bad, Bax, Fas, phospho-p53 (S46), Cleaved caspase-3, SMAC/Diablo, TNFR1 and Cytochrome c were induced in OVCAR-3 cells, whereas, Bax, TRAILR2, FADD, p27, phospho-p53 (S46), Cleaved caspase-3, Cytochrome c, SMAC/Diablo and TNFR1 were induced in MDAH-2774 cells. Combination treatment also inhibited both DNMT and HDAC activities and also mRNA levels in both ovarian cancer cells. AT-101 exhibits great potential in sensitization of human ovarian cancer cells to cisplatin treatment in vitro, suggesting that the combination of AT-101 with cisplatin may hold great promise for development as a novel chemotherapeutic approach to overcome platinum-resistance in human ovarian cancer.  相似文献   

8.
Cell death following photodynamic therapy (PDT) with the photosensitizer Pc 4 involves the intrinsic pathway of apoptosis. To evaluate the importance of Bax in apoptosis after PDT, we compared the PDT responses of Bax-proficient (Bax+/−) and Bax knock-out (BaxKO) HCT116 human colon cancer cells. PDT induced a slow apoptotic process in HCT Bax+/− cells following a long delay in the activation of Bax and release of cytochrome c from mitochondria. Although cytochrome c was not released from mitochondria following PDT in BaxKO cells, an alternative mechanism of caspase-dependent apoptosis with extensive chromatin and DNA degradation was found in these cells. This alternative process was less efficient and slower than the normal apoptotic process observed in Bax+/− cells. Early events upon PDT, such as the loss of mitochondrial membrane potential, photodamage to Bcl-2, and activation of p38 MAP kinase, were observed in both HCT116 cell lines. In spite of differences in the efficiency and mode of apoptosis induced by PDT in the Bax+/− and BaxKO cells, they were found to be equally sensitive to killing by PDT, as determined by loss of clonogenicity. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to and independent of Bax activation, but the process of cellular disassembly differs in Bax-expressing vs. non-expressing cells.  相似文献   

9.
This study investigated the mechanisms underlying the cytotoxicity of the green algae Ulva fasciata Delile. U. fasciata extract (UFE) inhibited the growth of HCT 116 human colon cancer cells by 50% at a concentration of 200 μg/ml. In addition, UFE stimulated the production of intracellular reactive oxygen species, an effect that was abolished by pretreatment with N-acetyl cysteine, which also inhibited the cytotoxic effects of UFE. UFE also induced morphological changes indicative of apoptosis, such as the formation of apoptotic bodies, DNA fragmentation, an increase in the population of apoptotic sub-G1 phase cells, and mitochondrial membrane depolarization. Concomitant activation of the mitochondria-dependent apoptotic pathway occurred via modulation of Bax and Bcl-2 expression, resulting in disruption of the mitochondrial membrane potential and activation of caspase-9 and caspase-3. This is the first report to demonstrate the cytotoxic effect of U. fasciata on human colon cancer cells and to provide a possible mechanism for this activity.  相似文献   

10.
11.
《Journal of Asia》2019,22(2):387-392
The effects of silkworm pupa protein hydrolysates (SPPHs) on the apoptosis of MGC-803 gastric cancer cells were investigated in this study. The role of mitochondrial-dependent apoptosis in SPPHs-dependent inhibition of MGC-803 cell viability was also explored. SPPHs were found to induce apoptosis in MGC-803 cells with an IC50 of 0.30 mg/ml.A series of changes in cellular organelle structural were observed during MGC-803 cell apoptosis that included mitochondrial swelling, vacuolation and rupture. These changes may ultimately impact on metabolic energy supply in MGC-803 cells. The expression of the pro- and anti-apoptotic proteins Bcl-2 and Bax, and the activation of cytochrome c (Cyt C), Caspase-3 and Caspase-9 were altered following induction of apoptosis by SPPHs in MGC-803 cells. Moreover, the increase in the ratio of Bax to Bcl-2 expression is known to play an important role in the activation of the mitochondrial-dependent apoptotic pathway.  相似文献   

12.
Apoptotic cell death has been observed in many in vivo and in vitro models of ischemia. However, the molecular pathways involved in ischemia-induced apoptosis remain unclear. We have examined the role of Bcl-2 family of proteins in mediating apoptosis of PC12 cells exposed to the conditions of oxygen and glucose deprivation (OGD) or OGD followed by restoration of oxygen and glucose (OGD-restoration, OGD-R). OGD decreased mitochondrial membrane potential and induced necrosis of PC12 cells, which were both prevented by the overexpression of Bcl-2 proteins. OGD-R caused apoptotic cell death, induced cytochrome C release from mitochondria and caspase-3 activation, decreased mitochondrial membrane potential, and increased levels of pro-apoptotic Bax translocated to the mitochondrial membrane, all of which were reversed by overexpression of Bcl-2. These results demonstrate that the cell death induced by OGD and OGD-R in PC12 cells is potentially mediated through the regulation of mitochondrial membrane potential by the Bcl-2 family of proteins. It also reveals the importance of developing therapeutic strategies for maintaining the mitochondrial membrane potential as a possible way of reducing necrotic and apoptotic cell death that occurs following an ischemic insult.  相似文献   

13.
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91phox-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.  相似文献   

14.
15.
Studies were designed to investigate the effects of baicalein on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP), apoptosis induction, and caspases-3 activity were examined by flow cytometric assay. Apoptosis-associated proteins such as p53, Bax, Bcl-2, cytochrome c, and caspase-3 were examined by Western blot. We demonstrated the increase in the levels of p53, Bax, and cytochrome c and decrease in the level of Bcl-2, which are associated with the induction of apoptotic cell death after 24 h treatment with baicalein in N18 cells. Baicalein induced an increase in the cytoplasmic levels of ROS and Ca2+ in 1 h and reached their peak at 3 h, and thereafter a loss of MMP by flow cytometry. We also demonstrated a release of the cytochrome c from mitochondria into cytosol and an activation of caspase-3, which led to the occurrence of apoptosis in N18 cells treated with baicalein by Western blot. Pretreatment was conducted with BAPTA (intracellular calcium chelator) in baicalein-treated cells, the decline of MMP was recovered, and the increase in the level of cytoplasmic Ca2+ was suppressed, and the proportion of apoptosis was also markedly diminished. In conclusion, our data suggests that oxidative stress and cellular Ca2+ modulates the baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in N18 cells.  相似文献   

16.
Endoplasmic reticulum (ER) stress-induced apoptosis may arise from multiple environmental and pharmacological causes, but the precise mechanism(s) involved are not completely known. Members of Bcl-2 protein family are important regulators of apoptosis. In this study, we report that in a process dependent on the proapoptotic Bcl-2 members Bax and Bak, exogenously expressed fluorescent protein localized to the ER lumen is released into the cytosol in cells undergoing ER stress. Upon ER stress induction, endogenous ER luminal proteins are also released into the cytosol in a similar manner accompanied by translocation and anchorage of Bax to the ER membrane. In addition, Bax and truncated-Bid (tBid) mediate a global increase in ER membrane permeability to ER luminal proteins in vitro. Importantly, antiapoptotic Bcl-XL antagonizes the effects of proapoptotic Bcl-2 proteins on ER membrane permeability. Consistent with Bax translocation to the ER membrane in whole apoptotic cells, there is also increased tight association of Bax with the ER membrane correlated with the increase in ER membrane permeability in vitro. Overall, these data suggest that the regulation of ER membrane permeability by Bcl-2 proteins could be an important molecular mechanism of ER stress-induced apoptosis.  相似文献   

17.
Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.The regulated elimination of cells by apoptosis is a key mechanism of development, tissue homeostasis and defense. In vertebrates, apoptosis is regulated through two pathways, the death receptor-mediated (extrinsic) and the mitochondrial (intrinsic) pathway, which is activated by numerous apoptotic stimuli. Mitochondrial apoptosis is characterized by loss of mitochondrial outer membrane integrity and the release of mitochondrial intermembrane space proteins, most notably cytochrome c, which leads to the activation of the caspase-9 and effector caspases.1Release of cytochrome c is governed by proteins of the B-cell lymphoma 2 (Bcl-2) family.2 The Bcl-2 family consists of three groups, whose expression and interaction decide cell survival. The anti-apoptotic Bcl-2 proteins include Bcl-2, Bcl-XL (B-cell lymphoma-extra large), Bcl-w (Bcl-2-like protein 2), Mcl-1 (myeloid cell leukemia sequence 1) and A1 (Bcl-2-related protein A1). The pro-apoptotic group of BH3-only proteins (containing a BH3-domain: Bim (Bcl-2-interacting mediator of cell death), Bid (BH3-interacting domain death agonist), Puma (p53-upregulated modulator of apoptosis), Noxa (Phorbol-12-myristate-13-acetate-induced protein 1), Bad (Bcl-2-associated death promoter), Bik (Bcl-2-interacting killer) and Hrk (activator of apoptosis hara-kiri)) activate the pro-apoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Bax and Bak can replace each other in most situations, but the presence of one of them is required for mitochondrial apoptosis. Upon activation Bax and Bak form oligomers in the outer mitochondrial membrane and cause the release of cytochrome c. How Bax and Bak are activated is still under debate. Different activation models have been proposed and investigated.According to the direct activation model BH3-only proteins can directly, by physical interaction activate Bax and Bak.3 The model was derived in studies investigating synthetic BH3-domain peptides in in vitro systems, that is, isolated mitochondria or liposomes, where peptides encompassing the BH3-domains of Bim or Bid (‘activator'' BH3-only proteins) were able to activate Bax. Peptides derived from the BH3-only proteins Bad, Bik, Hrk, Noxa or Puma did not activate Bax directly. However, these peptides can bind to anti-apoptotic Bcl-2 proteins with varying preferences.4 As this may neutralize a combination of anti-apoptotic proteins it may facilitate Bax/Bak activation by activator BH3-only proteins. Consequently, this group of BH3-only proteins has been named ‘sensitizer'' or ‘derepressor'' BH3-only proteins.3, 5, 6, 7 The direct activation model has received recent support by structural studies of activator BH3-domains bound to Bax.8 That study also found that the BH3-only peptides used previously lacked a residue that is important in the activation of Bax, and the previous results may have to be reconsidered. Indeed, a recent study illustrates that placing the BH3-domain from the various BH3-only proteins into intact Bid protein enhances Bax/Bak-activating capacity of the BH3-domains of Bid, Bim, Puma, Bmf (Bcl-2-modifying factor), Bik and Hrk.9The displacement (or indirect activation) model on the other hand posits that Bax and Bak are held in check by anti-apoptotic Bcl-2 proteins and auto-activate when this interaction is broken by BH3-only proteins (displacement). BH3-only proteins can bind to anti-apoptotic Bcl-2 proteins and upon apoptotic stimulation may cause the displacement of these proteins from Bax and Bak, which may lead to the activation of effectors. BH3-peptides derived from Bim and Puma can bind to all anti-apoptotic Bcl-2 proteins and its corresponding proteins exert killing upon overexpression, whereas Bad, Bmf, Bid, Bik, Hrk and Noxa display binding patterns restricted to certain anti-apoptotic Bcl-2 proteins.4 It was therefore suggested that Bax/Bak activation requires the neutralization/displacement of several anti-apoptotic proteins, which may be achieved by one BH3-only protein with broadly binding characteristics (such as Bim) or by the combination of BH3-only proteins with restricted binding capabilities (for instance Bad plus Noxa).10, 11The models have been further refined; the ‘embedded together'' model additionally considers the dynamic interaction of the proteins with the mitochondrial membrane,12 and it has been proposed that the models can be unified by taking two ‘modes'' of inhibition into account: anti-apoptotic Bcl-2 proteins have a dual function in inactivating both, BH3-only proteins and effectors. Pro-apoptotic signals cause the release of activator BH3-only proteins from sequestration with anti-apoptotic Bcl-2 proteins. Free BH3-only proteins directly activate effectors, however, cell death may still not be initiated because the effectors are then held in check by anti-apoptotic Bcl-2 proteins. Free activator BH3-only proteins are required to activate effectors.13This model unifies the two above models in the sense that it incorporates aspects of both, inhibition and displacement as well as direct activation. However, the core difference between the (direct) activation and the displacement model appears to be irreconcilable: in the activation model Bax and Bak are inactive unless receiving a stimulus from BH3-only proteins whereas in the displacement model they are active unless bound to anti-apoptotic proteins. Thus, in the absence of all other proteins one model predicts that Bax/Bak are active, the other that they are inactive. Obviously they cannot be both.The direct activation model has initially been established with Bax and the displacement model with Bak. The data are very strong that Bax is activated by direct interaction with BH3-only proteins. Recombinant Bak can also be directly activated by recombinant tBid,14 and Bid/BH3-chimaeras can activate recombinant Bak missing its C terminus.9 However, since Bak is normally inserted into the outer mitochondrial membrane where it may be bound to numerous other Bcl-2-family members, it has been difficult directly to test activation of Bak in the physiological situation.One possibility to ‘unify'' the original models may be in a model where Bax is physiologically activated by direct activation (Bax is inactive until receiving a signal through BH3-only proteins) whereas Bak is activated indirectly (auto-activates when the inhibition by Bcl-2-like proteins is relieved). Here we test this possibility of indirect Bak activation. We targeted anti-apoptotic Bcl-2 family proteins using RNAi. In this setting, protein concentrations and conditions are physiological, which avoids some of the problems associated with overexpression or cell-free experiments. Non-malignant cells may respond differently to the loss of anti-apoptotic Bcl-2 proteins compared with tumor cells.15 In this study, using non-malignant cells, we targeted all anti-apoptotic Bcl-2 molecules in combinations of two. In the absence of apoptotic stimuli we observed that the combined loss of Bcl-XL and Mcl-1 was sufficient to induce apoptosis. The direct activator proteins Bid, Bim and Puma were not needed. These observations provide evidence for indirect activation of Bak.  相似文献   

18.
There is an urgent need to improve the clinical management of non-small cell lung cancer (NSCLC), one of the most frequent causes of cancer-related deaths in men and women worldwide. Rhazya stricta, an important medicinal plant used in traditional Oriental medicine, possesses anti-oxidant, anti-carcinogenic and free radical scavenging properties. This study was done to explore the potential anticancer activity of a crude alkaloid extract of R. stricta (CAERS) against the NSCLC line A549. CAERS markedly suppressed the growth of A549 cells and considerably enhanced the anti-proliferative potential of cisplatin. CAERS-mediated inhibition of A549 cell growth correlated with the induction of apoptosis that was accompanied by numerous morphological changes, DNA fragmentation, an increase in the Bax/Bcl-2 ratio, the release of mitochondrial cytochrome c, activation of caspases 3 and 9 and cleavage of poly(ADP-ribose)-polymerase. CAERS reduced the constitutive expression of anti-apoptotic proteins (Bcl-2, Bcl-XL, Mcl-1 and Survivin) and cell cycle regulating proteins (cyclin D1 and c-Myc), but enhanced expression of the proapoptotic proteins Noxa and BAD. These observations indicate that CAERS induced apoptosis and sensitized NSCLC to cisplatin via a mitochondria-mediated apoptotic pathway. These data provide a rationale for using a combination of CAERS and CDDP to treat NSCLC and other CDDP-resistant tumors.  相似文献   

19.
Abstract

Prostate cancer is the most common malignancies among men. The present study is aimed at the investigation of dihydroxy gymnemic triacetate (DGT) from Gymnema sylvestre on mitochondrial apoptotic pathway and cell cycle arrest. Treatment of DGT resulted in a dose-dependent inhibition of growth of PC-3 cells. The cell cycle arrest was observed at the G2/M phase and accumulation of apoptotic cells was observed in DGT-treated prostate cancer cell lines. The occurrence of apoptosis in these cells was observed by DNA fragmentation. These events were associated with increased levels of pro-apoptotic proteins Bax, Bad and reduced levels of the antiapoptotic proteins Bcl-2, Bcl-xL and Mcl-1. DGT also induces the activation of caspase-9 and caspase-3. The above results, clearly, suggest that DGT induces apoptosis by the intrinsic pathways which could be very useful for the treatment of prostate cancer.  相似文献   

20.
Apoptosis acts in defense against microbial infection, and many infectious agents have developed strategies to inhibit host cell apoptosis. The human pathogen Chlamydia trachomatis (Ctr) is an obligate intracellular bacterium that strongly inhibits mitochondrial apoptosis of its human host cell but there is no agreement how the bacteria achieve this. We here provide a molecular analysis of chlamydial apoptosis-inhibition in infected human cells and demonstrate that the block of apoptosis occurs during the activation of the effectors of mitochondrial apoptosis, Bak and Bax. We use small-molecule Bcl-2-family inhibitors and gene targeting to show that previous models cannot explain the anti-apoptotic effect of chlamydial infection. Although the anti-apoptotic Bcl-2-family protein Mcl-1 was strongly upregulated upon infection, Mcl-1-deficient cells and cells where Mcl-1 was pharmacologically inactivated were still protected. Ctr-infection could inhibit both Bax- and Bak-induced apoptosis. Apoptotic Bax-oligomerization and association with the outer mitochondrial membrane was reduced upon chlamydial infection. Infection further inhibited apoptosis induced conformational changes of Bak, as evidenced by changes to protease sensitivity, oligomerization and release from the mitochondrial porin VDAC2. Mitochondria isolated from Ctr-infected cells were protected against the pro-apoptotic Bcl-2-family proteins Bim and tBid but this protection was lost upon protease digestion. However, the protective effect of Ctr-infection was reduced in cells lacking the Bax/Bak-regulator VDAC2. We further found that OmpA, a porin of the outer membrane of Ctr, associated upon experimental expression with mitochondria and inhibited apoptosis, phenocopying the effect of the infection. These results identify a novel way of apoptosis inhibition, involving only the most downstream modulator of mitochondrial apoptosis and suggest that Chlamydia has a protein dedicated to the inhibition of apoptosis to secure its survival in human cells.Subject terms: Protein quality control, Microbiology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号