首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
By manipulating the physical properties of oxygen, cells are able to harvest the large thermodynamic potential of oxidation to provide a substantial fraction of the energy necessary for cellular processes. The enzyme largely responsible for this oxygen manipulation is cytochrome c oxidase, which resides at the inner mitochondrial membrane. For unknown reasons, cancer cells do not maximally utilize this process, but instead rely more on an anaerobic-like metabolism demonstrating the so-called Warburg effect. As the enzyme at the crossroads of oxidative metabolism, cytochrome c oxidase might be expected to play a role in this so-called Warburg effect. Through protein assay methods and metabolic studies with radiolabeled glucose, alterations associated with cancer and cytochrome c oxidase subunit levels are explored. The implications of these findings for cancer research are discussed briefly.  相似文献   

4.

Background  

Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect.  相似文献   

5.
The Warburg effect and its cancer therapeutic implications   总被引:1,自引:0,他引:1  
Increased aerobic glycolysis in cancer, a phenomenon known as the Warburg effect, has been observed in various tumor cells and represents a major biochemical alteration associated with malignant transformation. Although the exact molecular mechanisms underlying this metabolic change remain to be elucidated, the profound biochemical alteration in cancer cell energy metabolism provides exciting opportunities for the development of therapeutic strategies to preferentially kill cancer cells by targeting the glycolytic pathway. Several small molecules capable of inhibiting glycolysis in experimental systems have been shown to have promising anticancer activity in vitro and in vivo. This review article provides a brief summary of our current understanding of the Warburg effect, the underlying mechanisms, and its influence on the development of therapeutic strategies for cancer treatment.  相似文献   

6.
7.
8.
9.
Cancer cell metabolism: Warburg and beyond   总被引:1,自引:0,他引:1  
Hsu PP  Sabatini DM 《Cell》2008,134(5):703-707
Described decades ago, the Warburg effect of aerobic glycolysis is a key metabolic hallmark of cancer, yet its significance remains unclear. In this Essay, we re-examine the Warburg effect and establish a framework for understanding its contribution to the altered metabolism of cancer cells.  相似文献   

10.
《Epigenetics》2013,8(7):566-568
Cancer development results from the accumulation of genetic and epigenetic changes. By interacting with intracellular signaling to promote carcinogenesis, epigenetic networks can actively transform cancer–promoting signals from tumor-permissive microenvironment to coordinate cellular proliferation and metabolism in the initiation and progression of cancers. As reported recently, NF-kappaB which can be activated by many soluble bioactive factors enriched in tumor microenvironments can promote the switch of cellular glucose metabolism from oxidative phosphorylation to oxygen-independent glycolysis in tumor cells, in addition to its well-known anti-apoptosis functions. Such epigenetic trans-generation of microenvironmental factors plays important roles in the development of cancers, particularly inflammation-related or sporadic cancers.  相似文献   

11.
12.
13.
14.
15.
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The “inactive” state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.  相似文献   

16.
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.  相似文献   

17.
The Warburg effect--a classical hallmark of cancer metabolism--is a counter-intuitive phenomenon in which rapidly proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying primarily on more efficient energy production through mitochondrial oxidative phosphorylation, as most normal cells do. The causes for the Warburg effect have remained a subject of considerable controversy since its discovery over 80 years ago, with several competing hypotheses. Here, utilizing a genome-scale human metabolic network model accounting for stoichiometric and enzyme solvent capacity considerations, we show that the Warburg effect is a direct consequence of the metabolic adaptation of cancer cells to increase biomass production rate. The analysis is shown to accurately capture a three phase metabolic behavior that is observed experimentally during oncogenic progression, as well as a prominent characteristic of cancer cells involving their preference for glutamine uptake over other amino acids.  相似文献   

18.
19.
20.
Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号