首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S. Luke Flory  Keith Clay 《Oecologia》2010,164(4):1029-1038
Multiple factors can affect the process of forest succession including seed dispersal patterns, seedling survival, and environmental heterogeneity. A relatively understudied factor affecting the process of succession is invasions by non-native plants. Invasions can increase competition, alter abiotic conditions, and provide refuge for consumers. Functional traits of trees such as seed size and life history stage may mediate the effects of invasions on succession. We tested the effects of the forest invader Microstegium vimineum on planted and naturally regenerating trees in a multi-year field experiment. We established plots containing nine species of small- and large-seeded tree species planted as seeds or saplings, and experimentally added Microstegium to half of all plots. Over 3 years, Microstegium invasion had an overall negative effect on small-seeded species driven primarily by the effect on sweetgum, the most abundant small-seeded species, but did not affect large-seeded species such as hickory and oak species, which have more stored seed resources. Natural regeneration was over 400% greater in control than invaded plots for box elder, red maple, and spicebush, and box elder seedlings were 58% smaller in invaded plots. In contrast to the effects on tree seedlings, invasion did not affect tree sapling survival or growth. Microstegium may be directly reducing tree regeneration through competition. Invaded plots had greater overall herbaceous biomass in 2006 and 2008 and reduced light availability late in the growing season. Indirect effects may also be important. Invaded plots had 120% more thatch biomass, a physical barrier to seedling establishment, and significantly greater vole damage to tree saplings during 2006 and 2007. Our results show that two tree functional traits, seed size and life history stage, determined the effects of Microstegium on tree regeneration. Suppression of tree regeneration by Microstegium invasions may slow the rate of forest succession and alter tree species composition.  相似文献   

2.
3.
Many ecosystems are created by the presence of ecosystem engineers that play an important role in determining species' abundance and species composition. Additionally, a mosaic environment of engineered and non-engineered habitats has been shown to increase biodiversity. Non-native ecosystem engineers can be introduced into environments that do not contain or have lost species that form biogenic habitat, resulting in dramatic impacts upon native communities. Yet, little is known about how non-native ecosystem engineers interact with natives and other non-natives already present in the environment, specifically whether non-native ecosystem engineers facilitate other non-natives, and whether they increase habitat heterogeneity and alter the diversity, abundance, and distribution of benthic species. Through sampling and experimental removal of reefs, we examine the effects of a non-native reef-building tubeworm, Ficopomatus enigmaticus, on community composition in the central Californian estuary, Elkhorn Slough. Tubeworm reefs host significantly greater abundances of many non-native polychaetes and amphipods, particularly the amphipods Monocorophium insidiosum and Melita nitida, compared to nearby mudflats. Infaunal assemblages under F. enigmaticus reefs and around reef's edges show very low abundance and taxonomic diversity. Once reefs are removed, the newly exposed mudflat is colonized by opportunistic non-native species, such as M. insidiosum and the polychaete Streblospio benedicti, making removal of reefs a questionable strategy for control. These results show that provision of habitat by a non-native ecosystem engineer may be a mechanism for invasional meltdown in Elkhorn Slough, and that reefs increase spatial heterogeneity in the abundance and composition of benthic communities.  相似文献   

4.
The spread of non-native plants has been depicted as a serious threat to biodiversity. However, it remains unclear whether the indigenousness of the invading plant plays a marked role for the ecological consequences of an invasion as few studies have compared the ecological impacts of non-native shrubs with structurally or functionally comparable native shrubs. We studied patches of introduced and native shrubs to assess whether there are general differences in plant species composition or biomass between patches formed by non-native versus native shrubs. The indigenousness of the shrub (non-native vs. native) did not explain the variation in soil nutrients, neither the production of shoot biomass or allocation of growth to different parts of the shoot. The amount of light reaching ground level did not differ between patches of a non-native and a native shrub. However, species richness and biomass of herbaceous plants were lower in patches of non-native than native shrubs and the amount of litter was higher below non-native than native shrubs. Our results suggest that the indigenousness of the patch-forming plant may be an important factor for the diversity and composition of associated herbaceous vegetation. Based on our results, resource availability (light and nutrients) is not a sufficient explanation for the negative effects of non-native shrubs on plant communities. Further research is needed to investigate whether alternative explanations, such as the novelty of the toxic compounds produced by non-native plants, can explain the differences we observed.  相似文献   

5.
Biological invasions severely impact native plant communities, causing dramatic shifts in species composition and the restriction of native species to spatially isolated refuges. Competition from resident species and the interaction between resource limitation and competition have been overlooked as mechanisms of community resistance in refugia habitats. We examined the importance of these factors in determining the resistance of California serpentine plant communities to invasion by three common European grasses, Avena barbata, Bromus diandrus, and Hordeum murinum. We added seeds of each of these grasses to plots subjected to six levels of resource addition (N, P, Ca, H2O, all resources together, and a no-addition control) and two levels of competition (with resident community present or removed). Resource limitation and competition had strong effects on the biomass and reproduction of the three invaders. The addition of all resources together combined with the removal of the resident community yielded individual plants that were fourfold to 20-fold larger and sixfold to 20-fold more fecund than plants from control plots. Competitor removal alone yielded invaders that were twofold to sevenfold larger and twofold to ninefold more fecund. N addition alone or in combination with other resources led to a twofold to ninefold increase in the biomass and fecundity of the invaders. No other resource alone significantly affected native or invader performance, suggesting that N was the key limiting resource during our experiment. We found a significant interaction between abiotic and biotic resistance for Bromus, which experienced increased competitive suppression in fertilized plots. The threefold increase in resident biomass with N addition was likely responsible for this result. Our results confirm that serpentine plant communities are severely N limited, which, in combination with competition from resident species, promotes the resistance of these systems to invasions. Our work suggests that better understanding the relative sensitivities of invaders and residents to the physical environment is critical to predicting how abiotic and biotic factors interact to determine community resistance.  相似文献   

6.
7.
8.
Light partitioning in experimental grass communities   总被引:1,自引:0,他引:1  
Through complementary use of canopy space in mixtures, aboveground niche separation has the potential to promote species coexistence and increase productivity of mixtures as compared to monocultures. We set up an experiment with five perennial grass species which differed in height and their ability to compete for light to test whether plants partition light under conditions where it is a limiting resource, and if this resource partitioning leads to increased biomass production in mixtures (using relative yield-based methods). Further, we present the first application of a new model of light competition in plant communities. We show that under conditions where biomass production was high and light a limiting resource, only a minority of mixtures outperformed monocultures and overyielding was slight. The observed overyielding could not be explained by species differences in canopy structure and height in monoculture and was also not related to changes in the canopy traits of species when grown in mixture rather than monoculture. However, where overyielding occurred, it was associated with higher biomass density and light interception. In the new model of competition for light, greater light use complementarity was related to increased total energy absorption. Future work should address whether greater canopy space-filling is a cause or consequence of overyielding.  相似文献   

9.
So far, effects of species richness on ecosystem functioning have mainly been investigated in the short term in experimental communities from which invasion was prevented. We kept the local species pools of experimental grassland communities with 1, 2, 4, 8, and 32 species closed for five years and subsequently opened them for invasion by cessation of weeding. As long as communities were weeded, extinctions were rare but positively related to species richness, diversity-productivity relationships were positive, and more diverse systems had a greater temporal stability. Following cessation of weeding, species-poor communities were more prone to invasion. However, invasion increased extinction especially in species-rich communities. Within two years, differences in species richness and biomass production between sets of communities of different initial species richness disappeared and the positive diversity-productivity relationship was no longer detectable whereas species compositions remained distinct. This indicates that the positive diversity-productivity relationships during the weeding phase were mainly controlled by species richness.Bis anhin wurden die Effekte der Artenvielfalt auf das Funktionieren von Ökosystemen vor allem in kurzfristigen Experimenten untersucht, in denen die Einwanderung von Pflanzenarten in die bestehenden Gesellschaften verhindert wurde. Im vorliegenden Versuch wurden die lokalen Artenpools von 1, 2, 4, 8 und 32 Arten unserer experimentellen Graslandgesellschaften während 5 Jahren künstlich geschlossen gehalten und danach geöffnet indem nicht mehr gejätet wurde. Solange die Gesellschaften gejätet wurden, gab es wenige Aussterbeereignisse, die aber positiv mit der Artenvielfalt korreliert waren. Die Beziehung zwischen Diversität und Produktivität war positiv und Systeme höherer Diversität zeigten eine größere zeitliche Stabilität. Nach der Aufgabe des Jätens nahm die Einwanderung vor allem in artenarmen Gesellschaften zu. Die Einwanderung erhöhte jedoch besonders das Aussterben in ursprünglich artenreichen Gesellschaften. Innerhalb von zwei Jahren verschwanden die Unterschiede in der Artenzahl und Biomasseproduktion zwischen den verschiedenen Graslandgesellschaften und eine positive Beziehung zwischen Diversität und Produktivität war nicht mehr feststellbar. Die Artenzusammensetzung der Versuchsflächen blieb jedoch unterschiedlich. Das deutet darauf hin, daß die positive Beziehung zwischen Diversität und Produktivität während der ersten Phase des Experiments vor allem durch die Artenzahl und nicht durch die Artenzusammensetzung hervorgerufen wurde.  相似文献   

10.
Potential selection in native grass populations by exotic invasion   总被引:2,自引:0,他引:2  
Mealor BA  Hild AL 《Molecular ecology》2006,15(8):2291-2300
Ecological impacts of invasive plant species are well documented, but the genetic response of native species to invasive dominance has been often overlooked. Invasive plants can drastically alter site conditions where they reach dominance, potentially exerting novel selective pressures on persistent native plant populations. Do native plant populations in old exotic invasions show evidence of selection when compared to conspecific populations in adjacent, noninvaded areas? We employ amplified fragment length polymorphism (AFLP) analysis to screen a large number of loci from two native grass species (Hesperostipa comata (Trin. & Rupr.) Barkworth and Sporobolus airoides Torr.) that occur in old infestations of the invasive forb Acroptilon repens. We then compare observed locus by locus FST values with distributions of FST estimated from simulation models under expectation of neutrality. We also compare the proportion of loci possibly linked to selection and those not linked to selection which exhibit parallel trends in divergence between two community types (invaded, noninvaded). Few loci (H. comata, 2.6%; S. airoides, 8.7%) in the two native grasses may be linked to genes under the influence of selection. Also, loci linked to selection showed a greater portion of parallel trends in divergence than neutral loci. Genetic similarities between community types were less than genetic similarity within community types suggesting differentiation in response to community alteration. These results indicate that a small portion of scored AFLP loci may be linked to genes undergoing selection tied to community dominance by an invasive species. We propose that native plants in communities dominated by exotic invasives may be undergoing natural selection.  相似文献   

11.
了解外来植物入侵对本土植物群落种群动态的影响对于植物入侵的防控极为重要。该文以加拿大一枝黄花(Solidago canadensis)入侵不同阶段的植物群落为研究对象, 对本土植物物种多样性以及常见优势种群的生态位变化进行了定量分析。结果表明: 加拿大一枝黄花氮素积累能力高于其他本土优势种群。随着加拿大一枝黄花入侵的深入, 本土植物群落的物种多样性呈现显著下降趋势; 氮素积累能力高的本土优势种群生态位宽度呈现明显的上升趋势, 而氮素积累能力低的本土优势种群生态位宽度则呈现明显下降的趋势; 本土优势种群的生态位重叠平均值呈现逐步下降的趋势。加拿大一枝黄花的入侵, 显著提高了土壤硝态氮含量, 而土壤铵态氮、有效磷、全磷和全氮含量显著降低。对氮素的积累能力决定了加拿大一枝黄花入侵后, 本土植物种群的动态变化格局。  相似文献   

12.
13.
Studies have shown that weed invasion into grasslands may be suppressed if the resident plant community is sufficiently diverse. The objective of this study was to determine whether increased forage plant diversity in grazed pasture communities might be associated with reduced weed abundance both in the aboveground vegetation and soil seed bank. Data were collected from a pasture experiment established in 1994 in Missouri, USA. The experiment consisted of 15 m×15 m plots sown with Festuca arundinacea Schreb. or Bromus inermis Leysser as a base species in mixtures of 1, 2, 3, 6, or 8 forage species. The plots were grazed by cattle during each growing season from 1998 to 2002. Aboveground plant species composition in each plot was measured using a point step method. Soil cores were collected in 1999 and 2002, and the species composition of germinable weed seeds in plots were evaluated by identifying seedlings as they germinated over an 8-week period. Species diversity was measured using several indices: species richness (S), Shannon–Wiener diversity index (H), and forage species evenness (J). Aboveground weed abundance in plots was unrelated to forage species richness (S), but weed abundance declined as the evenness (J) of resident forage species increased in mixtures. The species composition of mixtures may have affected weed abundance. Weeds both in the soil seed bank and aboveground vegetation were less abundant in mixtures that contained F. arundinacea compared with mixtures that contained B. inermis. Although variables like forage plant productivity may also suppress weed abundance in pastures, our results suggest that maintaining an evenly distributed mixture of forage species may help suppress weeds as well.

Zusammenfassung

Untersuchungen haben gezeigt, dass die Unkrautinvasion in Grünländer unterdrückt sein kann, wenn die ansässige Pflanzengemeinschaft ausreichend divers ist. Die Zielsetzung dieser Untersuchung war es zu bestimmen, ob eine erhöhte Futterpflanzendiversität in beweideten Grünlandgemeinschaften mit einer verringerten Unkrautabundanz sowohl bei der oberirdischen Vegetation als auch in der Bodensamenbank verbunden sein kann. Die Daten wurden in einem Weidelandexperiment gesammelt, das 1994 in Missouri, USA, etabliert wurde. Das Experiment bestand aus 15 m×15 m Probeflächen, die mit Festuca arundinacea Schreb. oder Bromus inermis Leysser als Basisarten in Mischungen von 1, 2, 3, 6 oder 8 Futterarten eingesät waren. Die Probeflächen wurden während jeder Wachstumssaison von 1998 bis 2002 stark mit Vieh beweidet. Die oberirdische Pflanzenartenzusammensetzung wurde in jeder Fläche mit einer Punktstopmethode gemessen. Bodenproben wurden 1999 und 2002 gesammelt und die Artenzusammensetzung der keimfähigen Unkrautsamen wurde in den Probeflächen bewertet, indem die Keimlinge identifiziert wurden, die in einer 8-wöchigen Periode keimten. Die Artendiversität wurde unter Verwendung verschiedener Indizes gemessen: Artenreichtum (S), Shannon–Wiener-Diversitätsindex (H) und Futterarten-Äquitabilität (J). Die oberirdische Unkrautartenabundanz in den Probeflächen stand in keiner Beziehung zum Futterartenreichtum (S), aber die Unkrautabundanz nahm ab, wenn die Äquitabilität (J) der ansässigen Futterarten in den Mischungen zunahm. Die Artenzusammensetzung der Mischungen könnte die Unkrautabundanz beeinflusst haben. Sowohl die Unkräuter in der Bodensamenbank, als auch in der oberirdischen Vegetation waren weniger abundant in Mischungen, die F. arundinacea enthielten, im Vergleich zu denen, die B. inermis enthielten. Obgleich Variablen wie die Futterpflanzenproduktivität möglicherweise ebenfalls die Unkrautabundanz im Weideland unterdrücken, lassen unsere Ergebnisse vermuten, dass die Aufrechterhaltung einer gleichmäßigen Mischung von Futterarten ebenfalls helfen kann, die Unkräuter zu unterdrücken.  相似文献   

14.
Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving‐up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark‐recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass‐dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results suggest that exotic grass invasions can influence wildlife populations by altering risk landscapes and survival.  相似文献   

15.
Exotic grasses are widely established across the Southeastern United States for livestock forage, resulting in the structural and compositional simplification of grasslands. Replacing exotic forages with native warm‐season grasses (NWSG) could benefit insects due to increased complexity of plant structure and composition, but livestock grazing also may facilitate spread of remnant exotic grasses such as bermudagrass (Cynodon dactylon) by reducing height and coverage of NWSG. We investigated these relationships among 12 operational‐scale pastures (6.4–10.5 ha) in Mississippi, U.S.A., during May–July (2011–2012). We quantified changes in bermudagrass coverage from one treatment of grazed exotic forages and three treatments of recently established NWSG, including a grazed mixed NWSG polyculture, a grazed Indian grass (Sorghastrum nutans) monoculture to evaluate the effects of stand‐type richness among NWSG pastures, and a non‐grazed NWSG polyculture to evaluate the effects of grazing. We also assessed responses of two insect orders, Orthoptera and Hemiptera, to treatment and bermudagrass coverage. We estimated a 101–190% average increase in coverage of bermudagrass in grazed native grass pastures (NWSG polyculture and Indian grass monoculture), but not in non‐grazed NWSG, suggesting that grazing facilitated the spread of this grass. Composition of Orthopteran and Hemipteran communities was correlated with bermudagrass coverage, and inter‐year differences in composition for both communities in grazed mixed NWSG, and for Hemiptera in grazed Indian grass, corresponded with increasing bermudagrass coverage in those treatments. Our results suggest that incomplete eradication of exotic forages prior to establishment of NWSG may be exacerbated by grazing, which could then impact stand condition and insect communities.  相似文献   

16.
Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not been recently disturbed. Another hypothesis that has received little attention is whether the effects of non-native plants on native plants vary among habitats that differ in soil fertility. We documented habitat occurrences of 27 non-native plant species and 377 native plant species encountered in numerous study plots in a broad sample of ecosystems in MS (USA). We then reviewed experimental and regression-based field studies in the scientific literature that specifically examined potential competitive (or facilitative) effects of these non-native species on native species and characterized the habitats in which effects were the greatest. As expected, the non-native species examined here in general were more likely to be associated with severely disturbed habitats than were the native species as a group. In contrast, we found that non-native species with competitive effects on natives were more likely to be associated with undisturbed habitats than with disturbed habitats. When longer term studies involving more resident species were given more weight in the analysis, competitive effects appeared to be the greatest in undisturbed habitats with low soil fertility. These results reinforce the notion that invasion is not synonymous with impact. The environmental conditions that promote invasion may limit competitive effects of invaders on native plant communities following invasion.  相似文献   

17.
18.
Aims Species aggregation is commonly seen in plant communities and may increase diversity by causing intraspecific competition to exceed interspecific competition. One potential source of this spatial aggregation is seed dispersal but it is unclear to what extent aggregated seed distributions affect plant diversity in real communities. Using a field experiment, I tested whether uniform or aggregated seed arrival alters community structure and whether these effects vary with sowing density.Methods The experiment consisted of two spatial seeding treatments (uniform and aggregated) that were fully crossed with three seed density treatments. Sixty, 3 × 4-m plots were arrayed in a low-diversity grassland located in Kansas, USA. Each plot was divided into forty-eight, 0.5 × 0.5-m patches. For aggregated seeding treatments, each of the 15 species was sown into three randomly selected patches within the plot (3×15 = 45). To create a uniform species arrival but control for the seed addition method, all 15 species were sown into 45 individual patches (with three patches remaining unsown) within each plot. Seed mass for each species was held constant at the plot scale between uniform or aggregated treatments within a given level of the sowing density treatment. After two growing seasons, plant density was quantified for all sown species in 15 randomly selected patches from each plot.Important findings I found evidence for shifts in community structure in response to the different spatial seeding patterns. The evenness of added species was higher under aggregated than uniform sowing patterns. There was no detectable effect of aggregated seed sowing on species richness at 3.75 m 2 scale. However, when species richness was extrapolated to larger scales (11.25 m 2), aggregated sowing was predicted to have greater richness than uniform sowing. Effects of seed aggregation on community structure were apparent only at moderate to high sowing rates, yet the latter are within the range of measured seed dispersal in similar grasslands. Additionally, as sowing density increased, seed mass became an increasingly effective predictor of relative abundances for added species, but only under uniform sowing patterns supporting the idea that aggregated dispersal may buffer weaker (smaller seeded) species from competition during colonization. This is the first experiment to show that aggregated seed dispersal patterns can increase at least some components of plant diversity in undisturbed grasslands and suggests that previous seed dispersal experiments, which utilize uniform seed sowing, may underestimate the potential effect of dispersal on plant community structure.  相似文献   

19.
Exotic grass invasion promotes fire which drives the conversion of native woodlands to exotic grasslands in the seasonally dry submontane forests of the island of Hawai'i. We compared potential rates of N fixation in an unburned forest site and a converted grassland site using the acetylene reduction assay. In addition to measuring rates of N fixation on separate and mixed substrates in each site, we tested the effect of abiotic factors on rates of N fixation of specific substrates. We hypothesized that rates of N fixation would be higher in the converted grassland site. N fixation estimates were 4.9 kg N ha−1 year−1 for the unburned forest, and 0.10 kg N ha−1 year−1 for the grassland site, so our hypothesis was rejected. The N fixation in the unburned forest occurs mostly on the leaf litter of native woody species. These substrates are absent from the grassland site, except for wood debris which was not consumed during the fires. No nitrogenase activity was detected in the rhizosphere and litter of grasses, the rhizospheres of shrubs or in soil. Although wood debris is not a significant contributor to the N fixed in the unburned forest, it contributes the majority of N fixed in the grassland. The response of nitrogenase activity to varying conditions of moisture and temperature suggests that microclimatic differences between sites do not control differences in N fixation activity; rather, these differences are due to the abundance of N-fixing substrates. The substantial decrease in N fixation activity after the conversion from woodland to grassland implies that ecosystem-level rates of N accretion are decreased by fire in these sites so much that the N lost during volatilization due to fire is not replenished over the long term by N fixation. Received: 10 January 1997 / Accepted: 7 August 1997  相似文献   

20.
The effect of ultraviolet (UV) light exposure, alone and in combination with CO2 exposure, on the water microbial community composition was tested in replicate experimental aquaria using source water from an established Amazon-themed exhibit housing mixed species of fishes. Total bacterial abundance, α-diversity metrics, and β-diversity metrics were determined 3 weeks and 1 week before, and weekly during 8 weeks of continuous treatment. The UV treatment significantly lowered the overall bacterial abundance while CO2 treatment had no effect. However, the UV exposure effect was variable across phyla. Some phyla were decreased while others were increased, including some of potential clinical significance. At the genus level, there were no significant differences in the relative abundance of Mycobacteria between treatments and an increase in the relative abundance of Aeromonas spp. with UV light treatment. Further work is needed to determine if the observed effects are dose-dependent or if different exposure doses produce different results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号