首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I procollagen is a heterotrimer composed of two proalpha1(I) chains and one proalpha2(I) chain, encoded by the COL1A1 and COL1A2 genes, respectively. Mutations in these genes usually lead to dominantly inherited forms of osteogenesis imperfecta (OI) by altering the triple helical domains, but a few affect sequences in the proalpha1(I) C-terminal propeptide (C-propeptide), and one, which has a phenotype only in homozygotes, alters the proalpha2(I) C-propeptide. Here we describe four dominant mutations in the COL1A2 gene that alter sequences of the proalpha2(I) C-propeptide in individuals with clinical features of a milder form of the disease, OI type IV. Three of the four appear to interfere with disulfide bonds that stabilize the C-propeptide conformation and its interaction with other chains in the trimer. Cultured cells synthesized proalpha2(I) chains that were slow to assemble with proalpha1(I) chains to form heterotrimers and that were retained intracellularly. Some alterations led to the uncharacteristic formation of proalpha1(I) homotrimers. These findings show that the C-propeptide of proalpha2(I), like that of the proalpha1(I) C-propeptide, is essential for efficient assembly of type I procollagen heterotrimers. The milder OI phenotypes likely reflect a diminished amount of normal type I procollagen, small populations of overmodified heterotrimers, and proalpha1(I) homotrimers that are compatible with normal skeletal growth.  相似文献   

2.
3.
Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with a wide spectrum of phenotypes varying from mild to severe and lethal conditions. The mild forms are usually caused by mutations which inactivate one allele of COL1A1 gene and result in a reduced amount of normal type I collagen, while the severe and lethal forms result from dominant negative mutations in COL1A1 or COL1A2 which produce structural defects in the collagen molecule. The most common mutations are substitutions of glycine residues, which are crucial to formation and function of the collagen triple helix, by larger amino acids. Although type I collagen is the major structural protein of both bone and skin, the mutations in type I collagen genes cause a bone disease. Some reports showed that the mutant collagen can be expressed differently in bone and in skin. Since most mutations identified in OI are dominant negative, the gene therapy requires a fundamentally different approach from that used for genetic-recessive disorders. The antisense therapy, by reducing the expression of mutant genes, is able to change a structural mutation into a null mutation, and thus convert severe forms of the disease into mild OI type I.  相似文献   

4.
5.
6.
7.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

8.
Osteogenesis imperfecta (OI) is a bone dysplasia caused by mutations in theCOL1A1 andCOL1A2 genes. Although the condition has been intensely studied for over 25 years and recently over 800 novel mutations have been published, the relation between the location of mutations and clinical manifestation is poorly understood. Here we report missense mutations inCOL1A1 of several OI patients. Two novel mutations were found in the D1 period. One caused a substitution of glycine 200 by valine at the N-terminus of D1 in OI type I/IV, lowering collagen stability by 50% at 34°C. The other one was a substitution of valine 349 by phenylalanine at the C-terminus of D1 in OI type I, lowering collagen stability at 37.5°C. Two other mutations, reported before, changed amino residues in D4. One was a lethal substitution changing glycine 866 to serine in genetically identical twins with OI type II. That mutated amino acid was near the border of D3 and D4. The second mutation changed glycine 1040 to serine located at the border of D4 and D0.4, in a proband manifesting OI type III, and lowered collagen stability at 39°C (2°C lower than normal). Our results confirm the hypothesis on a critical role of the D1 and D4 regions in stabilization of the collagen triple-helix. The defect in D1 seemed to produce a milder clinical type of OI, whereas the defect in the C-terminal end of collagen type caused the more severe or lethal types of OI.  相似文献   

9.
The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature.  相似文献   

10.
Osteogenesis imperfecta (OI) is a generalised disorder of connective tissue characterised by an increased fragility of bones and also manifested in other tissues containing collagen type I, by blue sclera, hearing loss, dentinogenesis imperfecta, hyperextensible joints, hernias and easy bruising. OI is dominantly inherited and results in >90% OI cases, caused by mutations in one of the two genes COL1A1 or COL1A2 coding for type I procollagen. The Lithuanian OI database comprises 147 case records covering the period of 1980 - 2001. Clinical and genealogical analysis of OI cases/families from Lithuania available for examination revealed 18 familial cases of OI type I and 22 sporadic cases: OI type II (3 cases), OI type III (11 cases) and OI type I (8 cases). As a result of their molecular genetic investigation, 11 mutations were identified in the COL1A1 gene in 13 unrelated patients. Of them, nine mutations (E500X, G481A, c.2046insCTCTCTAG, c.1668delT, c.1667insC, c.4337insC, IVS19+1G > A, IVS20-2A > G, IVS22-1G > T) appeared to be novel, i.e. not yet registered in the Human Type I and Type III Collagen Mutations Database (http://www.le.ac.uk/genetics/collagen).  相似文献   

11.
Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone loss and fragility. Mutations associated with OI have been found in genes encoding the type I collagen chains. People with OI type I often produce insufficient α1-chain type I collagen because of frameshift, nonsense, or splice site mutations in COL1A1 or COL1A2. This report is of a Chinese daughter and mother who had both experienced two bone fractures. Because skeletal fragility is predominantly inherited, we focused on identifying mutations in COL1A1 and COL1A2 genes. A novel mutation in COL1A1, c.700delG, was detected by genomic DNA sequencing in the mother and daughter, but not in their relatives. The identification of this mutation led to the conclusion that they were affected by mild OI type I. Open reading frame analysis indicated that this frameshift mutation would truncate α1-chain type I collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain 1,464 residues. The clinical data were consistent with the patients’ diagnosis of mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined with previous reports, identification of the novel mutation COL1A1-c.700delG in these patients suggests that additional genetic and environmental factors may influence the severity of OI.  相似文献   

12.
We have studied the structure and metabolism of type I procollagen in a case of perinatal lethal osteogenesis imperfecta (OI) type II. Cultured skin fibroblasts from the proband synthesized both normal and abnormal forms of type I procollagen. Some abnormal, overmodified molecules were secreted by OI cells, although less efficiently than normal molecules from control cells. The OI fibroblasts accumulated large amounts of abnormal proalpha1(I) and proalpha2(I) chains intracellularly. The extracellular collagenolytic activity was decreased compared to control cells. Furthermore, OI cells produced less type I procollagen and demonstrated lower capacity to synthesize DNA than control cells. We have found that in contrast to prolinase activity, the activity of prolidase (an enzyme essential for collagen synthesis and cell growth) is also significantly reduced in OI cells. No differences were found in the amount of the enzyme protein recovered from both the OI and control cells. However, we found that expressions of beta1 integrin and insulin-like growth factor-I receptor (receptors known to play an important role in up regulation of prolidase activity) were decreased in OI cells compared to control cells. The decrease in prolidase activity may provide an important mechanism of altered cell growth and collagen metabolism involved in producing the perinatal lethal form of the OI phenotype.  相似文献   

13.
The majority of collagen mutations causing osteogenesis imperfecta (OI) are glycine substitutions that disrupt formation of the triple helix. A rare type of collagen mutation consists of a duplication or deletion of one or two Gly-X-Y triplets. These mutations shift the register of collagen chains with respect to each other in the helix but do not interrupt the triplet sequence, yet they have severe clinical consequences. We investigated the effect of shifting the register of the collagen helix by a single Gly-X-Y triplet on collagen assembly, stability, and incorporation into fibrils and matrix. These studies utilized a triplet duplication in COL1A1 exon 44 that occurred in the cDNA and gDNA of two siblings with lethal OI. The normal allele encodes three identical Gly-Ala-Hyp triplets at aa 868-876, whereas the mutant allele encodes four. The register shift delays helix formation, causing overmodification. Differential scanning calorimetry yielded a decrease in T(m) of 2 degrees C for helices with one mutant chain and a 6 degrees C decrease in helices with two mutant chains. An in vitro binary co-processing assay of N-proteinase cleavage demonstrated that procollagen with the triplet duplication has slower N-propeptide cleavage than in normal controls or procollagen with proalpha1(I) G832S, G898S, or G997S substitutions, showing that the register shift persists through the entire helix. The register shift disrupts incorporation of mutant collagen into fibrils and matrix. Proband fibrils formed inefficiently in vitro and contained only normal helices and helices with a single mutant chain. Helices with two mutant chains and a significant portion of helices with one mutant chain did not form fibrils. In matrix deposited by proband fibroblasts, mutant chains were abundant in the immaturely cross-linked fraction but constituted a minor fraction of maturely cross-linked chains. The profound effects of shifting the collagen triplet register on chain interactions in the helix and on fibril formation correlate with the severe clinical consequences.  相似文献   

14.
Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 "null" allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5' donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon, that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype.  相似文献   

15.
Fibroblasts from a man with a mild form of osteogenesis imperfecta (OI) and from his son with perinatal lethal OI (OI type II) produced normal and abnormal type I procollagen molecules. The abnormal molecules synthesized by both cell strains contained one or two pro alpha 1(I) chains in which the glycine at position 550 of the triple-helical domain was substituted by arginine as the result of a G-to-A transition in the first base of the glycine codon. Cells from the mother produced only normal type I procollagen molecules. By allele-specific oligonucleotide hybridization to amplified genomic sequences from paternal tissues we determined that the mutant allele accounted for approximately 50% of the COL1A1 alleles in fibroblasts, 27% of those in blood, and 37% of those in sperm. These findings demonstrate that the father is mosaic for the potentially lethal mutation and suggest that the OI phenotype is determined by the nature of the mutation and the relative abundance of the normal and mutant alleles in different tissues. Furthermore, the findings make it clear that some individuals with mild to moderate forms of OI are mosaic for mutations that will be lethal in their offspring.  相似文献   

16.
RNase A protection analysis was used in the search for the cause of a non-lethal osteogenesis imperfecta (OI) phenotype (Sillence type III). Cleavage of the hybrid formed between a normal 2(I) sequence and RNA isolated from the patient indicated the presence of a mismatch. The position of the mismatch was determined and the corresponding area of COL1A2 was amplified using the polymerase chain reaction. Sequencing of cloned amplified DNA revealed the deletion, which was not present in either parent, of the final three bases of exon 19 in one of the patient's two COL1A2 alleles. The deletion results in the loss of amino acid 255 (a valine encoded by the last codon of exon 19) of the triple helical region of half of the 2(I) collagen chains but does not disrupt the splicing of the heterogeneous nuclear RNA (hnRNA). This provides further evidence that OI type III may result from autosomal dominant mutations rather than only from autosomal recessive mutations as had previously been believed.  相似文献   

17.
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type Ⅰ collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) chains of type Ⅰ collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.  相似文献   

18.
Osteogenesis imperfecta (OI) is a rare connective tissue disorder caused by mutations in the type I collagen genes, COL1A1 and COL1A2, and is characterised by low bone mass and bone fragility. In this study, we explored the relationship between type 1 collagen genes and the quantitative trait central corneal thickness (CCT). CCT was measured in a cohort of 28 Australian type I OI patients and mean CCT was found to be significantly lower compared to a normal population (P < 0.001). We then investigated CCT and corneal collagen fibril diameter and density in a mouse model of OI with a col1a2 mutation. Mean CCT was significantly lower in mutant mice (P = 0.002), as was corneal collagen fibril diameter (P = 0.034), whilst collagen fibril density was significantly greater in mutants (P = 0.034). Finally, we conducted a genetic study to determine whether common single nucleotide polymorphisms (SNPs) in COL1A1 and COL1A2 are associated with CCT variation in the normal human population. Polymorphism rs2696297 (P = 0.003) in COL1A1 and a three SNP haplotype in COL1A2 (P = 0.007) were all significantly associated with normal CCT variation. These data implicate type 1 collagen in the determination of CCT in both OI patients and normal individuals. This provides the first evidence of quantitative trait loci that influence CCT in a normal population and has potential implications for investigating genes involved in glaucoma pathogenesis, a common eye disease in which the severity and progression is influenced by CCT.  相似文献   

19.
20.
Although >90% of patients with osteogenesis imperfecta (OI) have been estimated to have mutations in the COL1A1 and COL1A2 genes for type I procollagen, mutations have been difficult to detect in all patients with the mildest forms of the disease (i.e., type I). In this study, we first searched for mutations in type I procollagen by analyses of protein and mRNA in fibroblasts from 10 patients with mild OI; no evidence of a mutation was found in 2 of the patients by the protein analyses, and no evidence of a mutation was found in 5 of the patients by the RNA analyses. We then searched for mutations in the original 10 patients and in 5 additional patients with mild OI, by analysis of genomic DNA. To assay the genomic DNA, we established a consensus sequence for the first 12 kb of the COL1A1 gene and for 30 kb of new sequences of the 38-kb COL1A2 gene. The sequences were then used to develop primers for PCR for the 103 exons and exon boundaries of the two genes. The PCR products were first scanned for heteroduplexes by conformation-sensitive gel electrophoresis, and then products containing heteroduplexes were sequenced. The results detected disease-causing mutations in 13 of the 15 patients and detected two additional probable disease-causing mutations in the remaining 2 patients. Analysis of the data developed in this study and elsewhere revealed common sequences for mutations causing null alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号