首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protaetiamycine is an insect defensin, derived from the larvae of the beetle Protaetia brevitarsis. In our previous work, we designed 9‐mer peptide analogs of protaetiamycine, including 9Pbw2 (RLWLAIKRR‐NH2), 9Pbw3 (RLWLAIWRR‐NH2), and 9Pbw4 (RLWLAWKRR‐NH2). 9Pbw2 and 9Pbw4 showed high antimicrobial activity without cytotoxicity, while 9Pbw3 with higher hydrophobicity compared to 9Pbw2 and 9Pbw4 showed high cytotoxicity as well as high antimicrobial activity (Shin et al., J. Pept. Sci. 2009; 15: 559–568). In this study, we investigated the anti‐inflammatory activities of 9Pbw2, 9Pbw3, and 9Pbw4 by quantitation of NO production in LPS‐stimulated RAW264.7 cells. The results showed that only 9Pbw3 has strong inhibition of NO production, implying that Trp7 as well as optimum level of hydrophobicity may play key roles in the anti‐inflammatory activity of 9Pbw3. In order to design potent anti‐inflammatory peptide with lower cytotoxicity as well as high stability from cleavage by protease compared to 9Pbw3, we synthesized 9Pbw3‐D , the all‐D ‐amino acid analog of 9Pbw3. 9Pbw3‐D showed less cytotoxicity against RAW264.7 cells as well as considerably stronger inhibition of NO production and inflammation‐induced cytokine production in LPS‐stimulated RAW264.7 cells than 9Pbw3. 9Pbw3‐D inhibited the gene expression of inflammatory‐induced cytokine significantly more than 9Pbw3 and showed high resistance to proteolytic digestion. Binding of 9Pbw3‐D with LPS caused higher enhancement of the FITC fluorescence as a result of its stronger interaction with LPS compared to that of 9Pbw3 and this result is in good agreement with their anti‐inflammatory activities. 9Pbw3‐D with higher anti‐inflammatory activity as well as lower cytotoxicity against mammalian cell compared to 9Pbw3 can be a potent noncytotoxic antibiotic candidates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
In our previous study, coprisin, a 43-mer defensin-like peptide, was derived from the dung beetle, Copris tripartitus, and a 9-mer CopA3 (monomer), truncated coprisin analog peptide, was designed. However, the antifungal effects of CopA3 are not known yet. In this study, the antifungal activity and mechanism of CopA3 were investigated and to develop a more effective antimicrobial peptide under physiological conditions, the enantiomeric d-CopA3 was designed. l- and d-CopA3 had a similar antifungal activity without chiral selectivity, and their activity was more potent than that of melittin used as a positive control. Furthermore, l- and d-CopA3 did not even show any hemolysis against human erythrocytes. Membrane studies using propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], suggested that the antifungal effect of l- and d-CopA3 was due to the membrane-active mechanism, by contrast with coprisin possessing apoptotic mechanism without membrane permeabilization. Finally, the proteolytic resistance and antifungal activity of l- and d-CopA3 against trypsin was analyzed by HPLC and colony count assay. The results showed that only d-CopA3 maintained a potent antifungal activity despite the proteolytic condition. Therefore, this study suggests that d-CopA3 has potential as a novel antimicrobial agent.  相似文献   

3.
Juneyoung Lee 《FEBS letters》2009,583(9):1544-1104
Antifungal effects of nuclear entry inhibitory signal peptide of HIV-1 Rev protein (Rev-NIS) were investigated. Rev-NIS contained potent antifungal activities without hemolytic effects. To understand the antifungal mechanism(s), in vivo and in vitro fluorescent studies were conducted. Flow cytometric analysis with bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and calcein-leakage measurement from large unilamellar vesicles (LUVs) indicated that Rev-NIS depolarized and disrupted the fungal membranes. These results were further confirmed by using giant unilamellar vesicles (GUVs). The current study suggests that Rev-NIS exerts its antifungal activity with membrane-active mechanism(s).  相似文献   

4.
Piscidin 2 (P2), a 22-residue cationic peptide isolated from the mast cells of hybrid striped bass, has potent antibacterial activities. However, its antifungal properties are not completely understood. In the current study, we investigated the antifungal effects and mode of action of P2. P2 exhibited potent antifungal activity against human pathogenic fungi. To understand the fungicidal properties of P2, we focused on a membrane-active mechanism of the peptide by in vivo and in vitro testing. Flow cytometric analysis using bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and protoplast regeneration experiments showed that P2 caused fungal membrane damage. Furthermore, fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed that P2 created pores in fungal membranes. These results were confirmed with dye leakage tests by using liposomes composed of phosphatidylcholine/phosphatidylserine (3:1, w/w), which mimicked fungal membranes. The present study indicated that P2 exerts its fungicidal effects by perturbing membrane activities.  相似文献   

5.
Glochidioboside was obtained from Sambucus williamsii and its biological effect has not been reported. Its antifungal activity against pathogenic fungi and the mode of action involved in its effect were examined. Glochidioboside exerted antifungal effect with almost no hemolytic effect against human erythrocytes. To understand its antifungal mechanisms, membrane studies were done. Using two dyes, 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)] and propidium iodide, membrane depolarization and permeabilization by glochidioboside were confirmed. Furthermore, the membrane-active mechanism was proven by synthesizing a model membrane, calcein-encapsulating large unilamellar vesicles (LUVs), and also by observing the influx of different sized fluorescent dyes, such as calcein, FD4 and FD10, into the fungal cells. The membrane-active action was pore-forming action with radii between 1.4 and 2.3 nm. Finally, three dimensional (3D) flow cytometric analysis showed the shrinkage of the fungal cells from the membrane damage. In conclusion, this study suggests that glochidioboside exerts an antifungal activity through a membrane-disruptive mechanism.  相似文献   

6.
The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74 nm and 1.4 nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death.  相似文献   

7.
PMAP-23 is a 23-mer peptide derived from porcine myeloid. To develop novel antifungal peptides useful as therapeutic drugs, it would require a strong fungicidal activity against pathogenic fungal cells. To this goal, several analogs, with amino acid substitutions, were designed to increase the net hydrophobicity by Trp (W)-substitution at positions 10, 13, or 14 at the hydrophilic face of PMAP-23 without changing the hydrophobic helical face. The Trp (W)-substitution (P6) showed an enhanced fungicidal and antitumor activities, with the fungicidal activity inhibited by salts and the respiratory inhibitor, NaN(3). The results suggested that the increase of hydrophobicity of the peptides correlated with fungicidal activity. The fungicidal effects of analog peptides were further investigated using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a membrane probe. In Candida albicans, the analog peptide (P6) exerted its fungicidal effect on the blastoconidia in 20% fetal bovine serum by disrupting the mycelial forms. Furthermore, P6 caused significant morphological changes, and these facts suggested that the fungicidal function of the novel analog peptide (P6) was by damaging the fungal cell membranes. Thus, this peptide may provide a useful template for designing novel antifungal peptides useful for the treatment of infectious diseases.  相似文献   

8.
As the occurrence of Candida species infections increases, so does resistance against commonly-used antifungal agents. It is therefore necessary to look for new antifungal drugs. This study investigated the antifungal activity of recently isolated, synthesized and characterized antimicrobial α-helical amphipathic peptides (12–18 amino acids long) from the venom of hymenoptera (melectin, lasioglossins I, II, and III, halictines I and II) as well as a whole series of synthetic analogs. The minimal inhibitory concentrations (MICs) against different Candida species (C. albicans, C. krusei, C. glabrata, C. tropicalis and C. parapsilosis) of the natural peptides amounted to 4–20 μM (7–40 mg/l). The most active were the synthetic analog all-D-lasioglossin III and lasioglossin III analog KNWKK-Aib-LGK-Aib-IK-Aib-VK-NH2. As shown using a) colony forming unit determination on agar plates, b) the efflux of the dye from rhodamine 6B-loaded cells, c) propidium iodide and DAPI staining, and d) fluorescently labeled antimicrobial peptide (5(6)-carboxyfluorescein lasioglossin-III), the killing of fungi by the peptides studied occurs within minutes and might be accompanied by a disturbance of all membrane barriers. The peptides represent a promising lead for the development of new, effective antifungal drugs.  相似文献   

9.
Membrane-active peptides play an essential role in many living organisms and their immune systems and counter many infectious diseases. Many have dual or multiple mechanisms and can synergize with other molecules, like peptides, proteins, and small molecules. Although membrane-active peptides have been intensively studied in the past decades and more than 3500 sequences have been identified, only a few received approvals from the US Food and Drug Administration. In this review, we investigated all the peptide therapeutics that have entered the market or were subjected to preclinical and clinical studies to understand how they succeeded. With technological advancement (e.g., chemical modifications and pharmaceutical formulations) and a better understanding of the mechanism of action and the potential targets, we found at least five membrane-active peptide drugs that have entered preclinical/clinical phases and show promising results for cancer treatment. We summarized our findings in this review and provided insights into membrane-active anticancer peptide therapeutics.  相似文献   

10.
Psacotheasin is a 34-mer knottin-type peptide that is derived from Psacothea hilaris larvae. In this study, the antifungal activity and mechanism(s) by which psacotheasin affects human fungal pathogens were investigated. Psacotheasin shows remarkable antifungal properties without hemolytic activity against human erythrocytes. To understand the antifungal mechanism(s) of psacotheasin in Candida albicans, flow cytometric analysis with DiBAC4(3) and PI was conducted. The results showed that psacotheasin depolarized and perturbed the plasma membrane of the C. albicans. Three-dimensional (3D)-flow cytometric contour-plot analysis, accompanied by decreased forward scatter (FS), which indicates cell size, confirmed that psacotheasin exerted antifungal effects via membrane permeabilization. The membrane studies, using a single GUV and FITC-dextran (FD) loaded liposomes, indicate that psacotheasin acts as a pore-forming peptide in the model membrane of C. albicans and the radius of pores were presumed to be anywhere from 2.3 to 3.3 nm. Therefore, the current study suggests that the mechanism(s) of psacotheasin’s antifungal properties function within the membrane.  相似文献   

11.
By the introduction of various amide surrogates, novel pseudopeptides corresponding to a membrane active depsipeptide were synthesized and their native characteristics compared with that of the peptide. The pseudopeptides had more resistance to serum proteases than the peptide and similar antimicrobial activities to that of the peptide without hemolytic activity. The pseudopeptides like the peptide were active against current drug resistant fungi and pathogenic fungi isolated from patients, and also had a strong synergism with current antifungal drugs against Candida albicans. The leakage assay suggested that the pseudopeptides also acted on the lipid membrane of pathogenic cells. These results indicated that the novel pseudopeptides had advantages over the peptide as a candidate for a novel antifungal drug and backbone modifications can be a tool in the development of a novel antifungal agent from membrane-active peptides isolated from natural sources or chemically synthesized.  相似文献   

12.
In this study, we isolated (-)-olivil-9′-O-β-d-glucopyranoside (OLI9G), a phytochemical from the stem bark of Sambucus williamsii, and investigated the antifungal mechanism of OLI9G against Candida albicans. First of all, the antifungal susceptibility testing and hemolysis assay showed that OLI9G exerted a potent activity without hemolysis compared to the activity of amphotericin B. To investigate the mechanism of action of OLI9G, we first examined membrane depolarization using cyanine dye, 3,3′-dipropylthiacarbocyanine iodide (diSC35). The results showed that OLI9G significantly changed the fungal membrane potential. To further understand this activity on the membrane, we did the propidium iodide (PI) influx assay. From the results, OLI9G caused membrane permeabilization in the fungal membrane, and the three dimensional (3D) flow cytometric contour plot from the PI influx assay further showed that the cells had shrunk due to the membrane damage. Finally, the membrane-active mechanism of OLI9G was confirmed by synthesizing a model membrane, calcein-encapsulating large unilamellar vesicles (LUVs). The calcein leakage showed the membrane-disruptive effects caused by direct action of OLI9G. In conclusion, the current study suggests that OLI9G exerts its antifungal activity through a membrane-disruptive action.  相似文献   

13.
In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC–dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.  相似文献   

14.
Pleurocidin (Ple) is a peptide derived from the winter flounder. In our previous study, we reported the antifungal effect of Ple and its mode of action. To develop novel antifungal peptides useful as therapeutic agents, two analogs, with amino acid substitutions, were designed to decrease the net hydrophobicity by Arg (R) or Ser (S)-substitution at the hydrophobic face of Ple without changing the amphipathic structure. By substituting Ser, the hydrophobicity of the peptide (anal-S) was decreased, and by substituting Arg, though the hydrophobicity of the peptide (anal-R) was decreased, the cationicity of this peptide was increased. CD measurements showed the substitution of Arg or Ser decrease the α-helical conformation of analog peptides. Studies with analog peptides have shown decreases in hydrophobicity and α-helicity do not affect antifungal activity but decrease hemolytic activity. These results suggest that highly hydrophobic and α-helical natures are not desirable in the design of antimicrobial peptides.  相似文献   

15.
Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.  相似文献   

16.
本研究对来源于苦荞的α-螺旋发夹抗菌肽FtAMP抗真菌机制与结构之间的关系进行了研究。首先人工合成了FtAMP分子中N-端和C-端的α-螺旋(FtAMP-N和FtAMP-C),探究两个α-螺旋究竟是哪个螺旋在起抗菌作用。然后以FtAMP为模板,α-螺旋区电荷和两亲性特征为变化要素,利用螺旋轮投影和特定氨基酸残基替换的方法,对其进行初步分子改造,并通过对多肽结构和活性比较,探讨FtAMP结构-功能的关系。研究表明,FtAMP-N和FtAMP-C都显示出良好的抗菌活性。根据螺旋轮投影方法分析螺旋的两亲性特征,并以FtAMP氨基酸序列为模板,分别表达4个FtAMP突变体(FtAMP-E12A、FtAMP-E12A/E9K、FtAMP-E12A/E9A和FtAMP-E12A/E9K/T24E)。圆二色光谱分析显示,4个多肽都可正确折叠成α-螺旋结构,在208 nm和222 nm处有典型的双负峰,表明氨基酸的改变及其表达过程中并未改变多肽的二级结构。抗真菌活性分析显示,与FtAMP相比,4种突变体对植物真菌的抑制作用均有一定增强。特别是FtAMP-E12A/E9K突变体,其抗真菌作用增强约1倍,同时诱导溶血活性并不显著,选择特异性提高近2倍。该研究也进一步表明,α-螺旋发夹抗菌肽发挥抗真菌效应主要与其螺旋结构有关,而与其抑制剂的活性位点没有关系,为该类抗菌肽结构和功能的关系提供了一定的参考。  相似文献   

17.
Melittin is a well-known antimicrobial peptide with membrane-active mechanisms. In this study, it was found that Melittin exerted its antifungal effect via apoptosis. Candida albicans exposed to Melittin showed the increased reactive oxygen species (ROS) production, measured by DHR-123 staining. Fluorescence microscopy staining with FITC-annexin V, TUNEL and DAPI further confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, and DNA and nuclear fragmentation. The current study suggests that Melittin possesses an antifungal effect with another mechanism promoting apoptosis.  相似文献   

18.
We report on the synthesis, biological function, and a plausible mode of action of a new group of lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived from positively charged peptides containing d- and l-amino acids (diastereomers) that are palmitoylated (PA) at their N terminus. The peptides investigated have the sequence K(4)X(7)W, where X designates Gly, Ala, Val, or Leu (designated d-X peptides). The data revealed that PA-d-G and PA-d-A gained potent antibacterial and antifungal activity despite the fact that both parental peptides were completely devoid of any activity toward microorganisms and model phospholipid membranes. In contrast, PA-d-L lost the potent antibacterial activity of the parental peptide but gained and preserved partial antifungal activity. Interestingly, both d-V and its palmitoylated analog were inactive toward bacteria, and only the palmitoylated peptide was highly potent toward yeast. Both PA-d-L and PA-d-V lipopeptides were also endowed with hemolytic activity. Mode of action studies were performed by using tryptophan fluorescence and attenuated total reflectance Fourier transform infrared and circular dichroism spectroscopy as well as transmembrane depolarization assays with bacteria and fungi. The data suggest that the lipopeptides act by increasing the permeability of the cell membrane and that differences in their potency and target specificity are the result of differences in their oligomeric state and ability to dissociate and insert into the cytoplasmic membrane. These results provide insight regarding a new approach of modulating hydrophobicity and the self-assembly of non-membrane interacting peptides in order to endow them with both antibacterial and antifungal activities urgently needed to combat bacterial and fungal infections.  相似文献   

19.
Toll-like receptor 4 (TLR4) has become a new target for combating Gram-negative bacterium-induced sepsis. In this study, we screened peptides that can interact with TLR4 from a random 16-peptide library using yeast two-hybrid system and performed functional identification for the obtained peptides. We got two positive clones out of 1.28x10(7) transformants. The peptides were sequenced and synthesized. Protein sequence comparison confirmed that the two peptides had no homologous proteins. The two peptides were found to significantly inhibit LPS-induced NF-kappaB activation in HEK-293 cells that were transfected with TLR4 cDNA, LPS-induced IkappaBalpha (IkappaB alpha) phosphorylation and NF-kappaB activation in monocytes, and release of IL-1, IL-6, and TNF-alpha by monocytes. We further confirmed that the No. 9 peptide could bind to TLR4 extracellular domain, but the No. 24 peptide could not, suggesting that two novel peptides were identified as the antagonists of TLR4, which significantly inhibited the effects of endotoxin in vitro. The No. 9 peptide may function through binding to TLR4 extracellular domain. Our findings suggest a promising countermeasure against Gram-negative bacterium-induced sepsis.  相似文献   

20.
The antifungal activity and mechanism of a 23-mer peptide, PMAP-23, derived from pig myeloid was investigated. PMAP-23 displayed strong antifungal activity against yeast and mold. To investigate the antifungal mechanism of PMAP-23, fluorescence activated flow cytometry and confocal laser scanning microscopy were performed. Candida albicans treated with PMAP-23 showed higher fluorescence intensity by propidium iodide(PI) staining, which was similar to that of Melittin than untreated cells. Confocal microscopy showed that the peptide was located in the plasma membrane. The action of peptides against fungal cell membranes was examined by treating prepared protoplasts of C. albicans with the peptide and lipid vesicle titration test. The result showed that the peptide prevented the regeneration of fungal cell walls and induced release of the fluorescent dye trapped in the artificial membrane vesicles, indicating that the peptide exerts its antifungal activity by acting on the plasma lipid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号