共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Climate change and plant regeneration from seed 总被引:2,自引:0,他引:2
JEFFREY L. WALCK SITI N. HIDAYATI KINGSLEY W. DIXON KEN THOMPSON PETER POSCHLOD 《Global Change Biology》2011,17(6):2145-2161
At the core of plant regeneration, temperature and water supply are critical drivers for seed dormancy (initiation, break) and germination. Hence, global climate change is altering these environmental cues and will preclude, delay, or enhance regeneration from seeds, as already documented in some cases. Along with compromised seedling emergence and vigour, shifts in germination phenology will influence population dynamics, and thus, species composition and diversity of communities. Altered seed maturation (including consequences for dispersal) and seed mass will have ramifications on life history traits of plants. Predicted changes in temperature and precipitation, and thus in soil moisture, will affect many components of seed persistence in soil, e.g. seed longevity, dormancy release and germination, and soil pathogen activity. More/less equitable climate will alter geographic distribution for species, but restricted migratory capacity in some will greatly limit their response. Seed traits for weedy species could evolve relatively quickly to keep pace with climate change enhancing their negative environmental and economic impact. Thus, increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming. 相似文献
4.
本文概述了南京中山植物园活植物信息数据库中的植物编码系统,重点介绍了植物编码的生成方法。该系统通过将关系数据库ORACLE与Microsoft C所提供的完备的计算模型与关系查询语言的强功能管理手段结合起来,弥补了现行商用数据库的不足,获得了较高的时空效率。 相似文献
5.
Eileen A. Lacey Talisin T. Hammond Rachel E. Walsh Kayce C. Bell Scott V. Edwards Elizabeth R. Ellwood Robert Guralnick Stefanie M. Ickert-Bond Austin R. Mast John E. McCormack Anna K. Monfils Pamela S. Soltis Douglas E. Soltis Joseph A. Cook 《Evolution》2017,10(1):2
Preparing students to explore, understand, and resolve societal challenges such as global climate change is an important task for evolutionary and ecological biologists that will require novel and innovative pedagogical approaches. Recent calls to reform undergraduate science education emphasize the importance of engaging students in inquiry-driven, active, and authentic learning experiences. We believe that the vast digital resources (i.e., “big data”) associated with natural history collections provide invaluable but underutilized opportunities to create such experiences for undergraduates in biology. Here, we describe an online, open-access educational module that we have developed that harnesses the power of collections-based information to introduce students to multiple conceptual and analytical elements of climate change, evolutionary, and ecological biology research. The module builds upon natural history specimens and data collected over the span of nearly a century in Yosemite National Park, California, to guide students through a series of exercises aimed at testing hypotheses regarding observed differences in response to climate change by two closely related and partially co-occurring species of chipmunks. The content of the module can readily be modified to meet the pedagogical goals and instructional levels of different courses while the analytical strategies outlined can be adapted to address a wide array of questions in evolutionary and ecological biology. In sum, we believe that specimen-based natural history data represent a powerful platform for reforming undergraduate instruction in biology. Because these efforts will result in citizens who are better prepared to understand complex biological relationships, the benefits of this approach to undergraduate education will have widespread benefits to society. 相似文献
6.
Collares-Pereira M Korver H Cao Thi BV Santos-Reis M Bellenger E Baranton G Terpstra WJ 《FEMS microbiology letters》2000,185(2):181-187
From 228 recent Leptospira isolates from mainland Portugal and Azorean wild mammals, 149 were characterized at the serovar level by monoclonal antibodies (MAbs), a quick serological method in epidemiological studies. In order to compare this antigenic information with that from new genetic techniques, a sample of isolates was analyzed through pulsed-field agarose gel electrophoresis (PFGE) (n=71), mapped restriction site polymorphisms (MRSPs) in PCR-amplified rRNA genes (n=45, including 13 saprophytes) and arbitrarily primed polymerase chain reaction (AP-PCR) fingerprinting (n=32). MRSP and AP-PCR lead to species identification of the studied 32 pathogenic isolates: Leptospira interrogans (n=3), Leptospira kirschneri (n=8) and Leptospira borgpetersenii (n=21). MAbs and PFGE characterized pathogenic isolates at the serovar level and resulted mainly in agreement (64%) although many discrepancies (35%) were observed. 相似文献
7.
Modelling habitat-suitability using museum collections: an example with three sympatric Apodemus species from the Alps 总被引:3,自引:0,他引:3
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola , and also for the co-occurring A. flavicollis and A. sylvaticus .
Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections.
Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area.
Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species. 相似文献
Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections.
Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area.
Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species. 相似文献
8.
This study measured sediment stability, colloidal and total carbohydrate and chlorophyll a in the upper 2 mm of the sediment over a whole emersion period (0800–1140) in the Tagus estuary, Portugal on the 18th April 2000. Low-temperature scanning electron microscopy (LTSEM) time series images revealed the migration of microalgae throughout the emersion period, including their appearance at the sediment surface at the beginning of emersion and their subsequent return below the surface at the end of emersion. Different species arrived at the sediment surface at different times and there was a slight lag between the appearance of the first cells and the subsequent increase in sediment stability. Increased chlorophyll a concentration in the surface sediments preceded the increase in sediment stability, whilst colloidal and total carbohydrate concentrations increased afterwards. Sediment water content decreased during the emersion period. Erosion threshold increased shortly after the microalgal cells appeared at the sediment surface, suggesting that the cells themselves act to `armour' the sediment surface, retarding erosion. Lack of correlation between sediment stability and factors traditionally considered to control sediment stability (e.g., water content and carbohydrate content) indicates that an important variable or interaction has yet to be identified. One possibility is that the carbohydrate fraction extracted does not measure accurately the binding effectiveness of the carbohydrates in the sediment. We propose feedback and `critical point' models to explain how the various sediment properties determine sediment stability. The implication is that sediment stability varies in an apparently idiosyncratic and site-specific fashion due to the complex interaction of physical and biological variables. Given the importance of ecological processes in intertidal sediments, the measurement, understanding and modelling of sediment erosion would benefit greatly from the application of ecological methods of experimental design and sampling. 相似文献
9.
KARI KLANDERUD 《Journal of Ecology》2005,93(1):127-137
10.
Global climatic conditions are expected to become more variable in the future, which will have far-reaching impacts on food production. In Asia, many of these impacts have been measured, but a comprehensive analysis of the effects of climate change on food production at the regional scale is limited. In this study, two key issues were addressed. First, we estimated the actual trends in temperature and precipitation across 12 Asian countries in Southern, South-Eastern, Western, and Eastern Asia between 1970 and 2018 and examined their implications on food production. Second, we deployed robust estimation techniques and examined how climatic conditions influence food production across Asian sub-regions. The results show that annual temperature across Asian regions trends positively. However, a cross-country analysis reveals varied trends in annual rainfall. The regional results indicate that temperature significantly induces food production in all regions except South-Eastern Asia, where the effect is negligible. Rainfall promotes food production in Southern, South-Eastern, and Western Asia but is not favourable to food production in Eastern Asia. The findings also show that the impacts of climatic variables on food production differ significantly from country to country. Our results are robust and suggest that substantial investments in agricultural extension, research programmes, and improved irrigation infrastructure are critical to enhancing food production and security in Asia. 相似文献
11.
Climate change and plant distribution: local models predict high-elevation persistence 总被引:1,自引:0,他引:1
CHRISTOPHE F. RANDIN ROBIN ENGLER SIGNE NORMAND† MASSIMILIANO ZAPPA‡ NIKLAUS E. ZIMMERMANN‡ PETER B. PEARMAN PASCAL VITTOZ§ WILFRIED THUILLER¶ ANTOINE GUISAN 《Global Change Biology》2009,15(6):1557-1569
Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range, and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolutions and geographic extents. Here, we assess whether climate change-induced habitat losses predicted at the European scale (10 × 10' grid cells) are also predicted from local-scale data and modeling (25 m × 25 m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10 × 10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local-scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations. 相似文献
12.
13.
Submersed aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects on the hydrological regime, sedimentation, nutrient cycling and habitat of associated fauna. Modifications of aquatic plant communities, for example through the introduction of invasive species, can alter these functions. In the Sacramento-San Joaquin River Delta, California, a major invasive submersed plant, Brazilian waterweed Egeria densa, has become widespread and greatly affected the functionality of the submersed aquatic plant community. Rapid assessments of the distribution and abundance of this species are therefore crucial to direct management actions early in the season. Given the E. densa bimodal growth pattern (late spring and fall growth peaks), summer assessments of this species may indicate which and where other submersed species may occur and fall assessments may indicate where this and other species may occur in the following spring, primarily because the Delta’s winter water temperatures are usually insufficient to kill submersed aquatic plant species. We assessed community composition and distribution in the fall of 2007 and summer of 2008 using geostatistical analysis; and measured summer biomass, temperature, pH, salinity, and turbidity. In the fall of 2007, submersed aquatic plants covered a much higher proportion of the waterways (60.7%) than in the summer of 2008 (37.4%), with a significant overlap between the seasonal distribution of native and non-native species. Most patches were monospecific, and multispecies patches had significantly higher dominance by E. densa, co-occurring especially with Ceratophyllum demersum. As species richness of non-natives increased there was a significant decrease in richness of natives, and of native biomass. Sustained E. densa summer biomass negatively affected the likelihood of presence of Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis but not their biomass within patches. Depth, temperature and salinity were associated with biomass; however, the direction of the effect was species specific. Our results suggest that despite native and invasive non-native submersed plant species sharing available niches in the Delta, E. densa affects aquatic plant community structure and composition by facilitating persistence of some species and reducing the likelihood of establishment of other species. Successful management of this species may therefore facilitate shifts in existing non-native or native plant species. 相似文献
14.
? The extent to which plants exert an influence over ecosystem processes, such as nitrogen cycling and fire regimes, is still largely unknown. It is also unclear how such processes may be dependent on the prevailing environmental conditions. ? Here, we applied mechanistic models of plant-environment interactions to palaeoecological time series data to determine the most likely functional relationships of Empetrum (crowberry) and Betula (birch) with millennial-scale changes in climate, fire activity, nitrogen cycling and herbivore density in an Irish heathland. ? Herbivory and fire activity preferentially removed Betula from the landscape. Empetrum had a positive feedback on fire activity, but the effect of Betula was slightly negative. Nitrogen cycling was not strongly controlled by plant population dynamics. Betula had a greater temperature-dependent population growth rate than Empetrum; thus climate warming promoted Betula expansion into the heathland and this led to reduced fire activity and greater herbivory, which further reinforced Betula dominance. ? Differences in population growth response to warming were responsible for an observed shift to an alternative community state with contrasting forms of ecosystem functioning. Self-reinforcing feedback mechanisms--which often protect plant communities from invasion--may therefore be sensitive to climate warming, particularly in arctic regions that are dominated by cold-adapted plant populations. 相似文献
15.
Kevin McCluskey Jill P Parsons Kimberly Quach Clifford S Duke 《Journal of biosciences》2017,42(2):321-331
While living collections are critical for biological research, support for these foundational infrastructure elements is inconsistent, which makes quality control, regulatory compliance, and reproducibility difficult. In recent years, the Ecological Society of America has hosted several National Science Foundation–sponsored workshops to explore and enhance the sustainability of biological research infrastructure. At the same time, the United States Culture Collection Network has brought together managers of living collections to foster collaboration and information exchange within a specific living collections community. To assess the sustainability of collections, a survey was distributed to collection scientists whose responses provide a benchmark for evaluating the resiliency of these collections. Among the key observations were that plant collections have larger staffing requirements and that living microbe collections were the most vulnerable to retirements or other disruptions. Many higher plant and vertebrate collections have institutional support and several have endowments. Other collections depend on competitive grant support in an era of intense competition for these resources. Opportunities for synergy among living collections depend upon complementing the natural strong engagement with the research communities that depend on these collections with enhanced information sharing, communication, and collective action to keep them sustainable for the future. External efforts by funding agencies and publishers could reinforce the advantages of having professional management of research resources across every discipline. 相似文献
16.
17.
Waite TA Strickland D 《Proceedings. Biological sciences / The Royal Society》2006,273(1603):2809-2813
Population declines along the lower-latitude edge of a species' range may be diagnostic of climate change. We report evidence that climate change has contributed to deteriorating reproductive success in a rapidly declining population of the grey jay (Perisoreus canadensis) at the southern edge of its range. This non-migratory bird of boreal and subalpine forest lives on permanent territories, where it hoards enormous amounts of food for winter and then breeds very early, under still-wintry conditions. We hypothesized that warmer autumns have increased the perishability of hoards and compromised subsequent breeding attempts. Our analysis confirmed that warm autumns, especially when followed by cold late winters, have led to delayed breeding and reduced reproductive success. Our findings uniquely show that weather months before the breeding season impact the timing and success of breeding. Warm autumns apparently represent hostile conditions for this species, because it relies on cold storage. Our study population may be especially vulnerable, because it is situated at the southern edge of the range, where the potential for hoard rot is most pronounced. This population's demise may signal a climate-driven range contraction through local extinctions along the trailing edge. 相似文献
18.
19.
In the social sciences, there is currently no consensus on the mechanism by which cultural elements come and go in human society. For elements that are value-neutral, an appropriate null model may be one of random copying between individuals in the population. We show that the frequency distributions of baby names used in the United States in each decade of the twentieth century, for both males and females, obey a power law that is maintained over 100 years even though the population is growing, names are being introduced and lost every decade and large changes in the frequencies of specific names are common. We show that these distributions are satisfactorily explained by a simple process in which individuals randomly copy names from each other, a process that is analogous to the infinite-allele model of population genetics with random genetic drift. By its simplicity, this model provides a powerful null hypothesis for cultural change. It further explains why a few elements inevitably become highly popular, even if they have no intrinsic superiority over alternatives. Random copying could potentially explain power law distributions in other cultural realms, including the links on the World Wide Web. 相似文献
20.
Jonathan R. Mosedale Kirsten E. Abernethy Richard E. Smart Robert J. Wilson Ilya M. D. Maclean 《Global Change Biology》2016,22(11):3814-3828
The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate‐sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision‐making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. 相似文献