首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of cuboidal iron-sulfur clusters [Fe4S3(NO)4(PR3)3]0,1+ (R = Et, Pri, Cy) were synthesized by two routes: reductive desulfurization of [Fe4S4(NO)4] by tertiary phosphines, and substitution of triphenylphosphine in [Fe44S3(NO)4(PPh3)3] by a more basic phosphine. The structures of 3[Fe4S3(NO)4(PEt3)3] · 0.5Et2O, [Fe4S3(NO)4(PEt3)3] [Fe4S3(NO)7] and partially substituted [Fe4S3(NO)4(PPh3)2 (PPri3)] have been determined by X-ray diffraction in order to define the cuboidal Fe4S3 core, previously known only in Roussin's black anion and its reduced form, [Fe4S3(NO)77]1−,2−, and as a part of the iron-molybdenum cofactor of nitrogenase.  相似文献   

2.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

3.
The enthalpies of reaction of HMo(CO)3C5R5 (R = H, CH3) with diphenyldisulfide producing PhSMo(CO)3C5R5 and PhSH have been measured in toluene and THF solution (R = H, ΔH= −8.5 ± 0.5 kcal mol−1 (tol), −10.8 ± 0.7 kcal mol−1 (THF); R = CH3, ΔH = −11.3±0.3 kcal mol−1 (tol), −13.2±0.7 kcal mol−1 (THF)). These data are used to estimate the Mo---SPh bond strength to be on the order of 38–41 kcal mol−1 for these complexes. The increased exothermicity of oxidative addition of disulfide in THF versus toluene is attributed to hydrogen bonding between thiophenol produced in the reaction and THF. This was confirmed by measurement of the heat of solution of thiophenol in toluene and THF. Differential scanning calorimetry as well as high temperature calorimetry have been performed on the dimerization and subsequent decarbonylation reactions of PhSMo(CO)3Cp yielding [PhSMo(CO)2Cp]2 and [PhSMo(CO)Cp]2. The enthalpies of reaction of PhSMo(CO)3Cp and [PhSMo(CO)2Cp]2 with PPh3, PPh2Me and P(OMe)3 have also been measured. The disproportionation reaction: 2[PhSMo(CO)2Cp]2 → 2PhSMo(CO)3Cp + [PhSMP(CO)Cp]2 is reported and its enthalpy has also been measured. These data allow determination of the enthalpy of formation of the metal-sulfur clusters [PhSMo(CO)nC5H5]2, N = 1,2.  相似文献   

4.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

5.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

6.
The dimetal μ-vinylidene complexes Cp(CO)2MnPt(μ-C = CHPh)L2 (L = tert.-phosphine or -phosphite), which have been obtained by coupling of the mononuclear complex Cp(CO)2Mn=C=CHPh and unsaturated PtL2 unit, add smoothly the Fe(CO)4 moiety to produce trimetal MnFePt compounds. The μ3-vinylidene cluster CpMnFePt(μ3-C=CHPh)(CO)6(PPh3) was prepared in quantitative yields from the reactions of Cp(CO)2MnPt(μ-C=CHPh)(PPh3)L (L = PPh3 or CO) with Fe2(CO)9 in benzene at 20 °C. The phosphite-substituted complexes Cp(CO)2Mnpt(μ-C=CHPh)L2 (L = P(OEt)3 or P(OPri)3) react under analogous conditions with Fe2(CO)9 to give mixtures (2:3) of the penta- and hexacarbonyl clusters, CpMnFePt(μ3-C = CHPh)(CO)5L2 and CpMnFePt(μ3-C = CHPh)(CO)6L, respectively. The similar reaction of the dimetal complex Cp(CO)2MnPt(μ-C = CHPh)(dppm), in which the Pt atom is chelated by dppm = Ph2PCH2PPhPin2 ligand, gives only a 15% yield of the analogous trimetal μ3-vinylidene hexacarbonyl product CpMnFePt(μ3-C = CHPh)(CO)(dppm), but the major product (40%) is the tetranuclear μ4-vinylidene cluster (dppm)PtFe34-C = CHPh)(CO)9. The IR and 1H, 13C and 31P NMR data for the new complexes are reported and discussed.  相似文献   

7.
The binuclear cyanoferrate, tetraphenylphosphonium pentacyanoiron(III)-μ-cyano-amminetetracyanoiron(III), [(C6H5)4P]4[Fe2(CN)10NH3]4−, was synthesized by air oxidation of aqueous solutions of Na3[Fe(CN)5NH3] · 3H2O. Single crystal X-ray diffraction studies show the compound to contain the binuclear, cyano-bridged anion, [(NC)5Fe---NC---Fe(CN)4NH3]4−. This compound is structurally identical to the one prepared by A. Ludi et al., [Inorg. Chim. Acta, 34, 113 (1979)], with the exception that [Fe(CN)6]3− is not required for the synthesis of this compound. The Fe(III) atoms are antiferromagnetically coupled through the CN bridge, as shown by a maximum in the magnetic susceptibility at 50 K. The electronic and IR spectra of the complex in the solid state and in solution are discussed.  相似文献   

8.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

9.
The reaction of thiamine with K2PtIICl4 and with PtIVCl4 in the presence of excess NaSCN in aqueous solution gave thiamine salts, (H-thiamine)[Pt(SCN)4] · 3H2O (1) and (H-thiamine)[Pt(SCN)6] · H2O (2), respectively, structures of which have been determined by X-ray diffraction. The thiamine molecule adopts the usual F conformation in each salt. In 1, [Pt(SCN)4]2− ions act as large planar spacers in the crystal lattice and interact scarcely with thiamine, except for a hydrogen bonding with the terminal hydroxy O(5γ). Instead, water molecules form two types of host–guest-like interactions with the pyrimidine and the thiazolium moieties of a thiamine molecule, one being a C(2)–Hwaterpyrimidine bridge and the other being an N(4′)–Hwaterthiazolium bridge. In 2, despite the much larger ion size, octahedral [Pt(SCN)6]2− ions form a C(2)–Hanionpyrimidine bridge and an N(4′)–Hanionthiazolium bridge. An additional hydrogen bonding between the anion and the terminal O(5γ) of thiamine creates a hydrogen-bonded macrocyclic ring {thiaminium–[Pt(SCN)6]2−}2, a supramolecule.  相似文献   

10.
Unlike ZrCl4, ZrBr4 is not ammonolysed in liquid ammonia at temperatures up to −33 °C. The existence of ammoniates ZrBr4nH3 (n = 17, 12 and 9) at −36 °C has been established; at room temperature, the hexammine ZrBr4 · 6NH3 is the stable species which becomes ZrBr4 · 2NH3 at 200 °C. When treated with an excess of NH4CN in liquid ammonia, complete replacement of bromide ions by cyanide occurs to give an inseparable mixture of Zr(CN)4 · 2NH3 and NH4Br. The chloride and bromide of zirconium(III) also undergo no ammonolysis in liquid ammonia; the ammoniates stable at room temperature are ZrCl3 · 2.5NH3 and ZrBr3 · 6NH3.  相似文献   

11.
The reaction of ReH92− with Mo(diglyme)(CO)3 leads to the formation of the mixed metal cluster trianion, ReMo3H4(CO)123−. This species has been characterized analytically, spectroscopically and through X-ray diffraction analysis. A pseudo-tetrahedral arrangement of M(CO)3 fragments is adopted, such that each set of three carbonyl ligands eclipses the adjacent three tetrahedral edges, an apparent result of the location of the hydride ligands on the tetrahedral faces. Variable temperature NMR studies revealed a fluctional process for some of the carbonyl ligands, but not for the hydrides. Crystal data for [Me4N]3[ReMo3H4(CO)12]·THF; space group P21/n, a = 12.157(2), B = 21.480(4), C = 15.964(3) Å, β = 98.26(1)°, Z = 4, R = 0.067 and Rw = 0.076.  相似文献   

12.
Rotational barriers about the M-S bonds of 16-electron bent metallocene monothiolates (η5-C5H5)2Zr(Cl) (SR) (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (1a–d) have been measured by dynamic 1H NMR methods: 32, 33, 35 and 26 kJ mol−1, respectively. The ground-state orientation about the Zr-S bonds of 1 that maximizes Spπ → Mdπ bonding (Cl-Zr-S-R ≈ 90°) also maximizes CpR steric interaction, whereas the rotational transition-state orientation (Cl-Zr-S-R ≈ 0°) is one that minimizes Spπ → Mdπ bonding and maximizes ClR steric interaction. Deviation from a ground-state orientation that is ideal for Spπ → Mdπ bonding might be expected as the size of the R group and CpR steric interaction increases. Thus, the aberrant trend for the R = −C(CH3)3 derivative could be attributed to a ground-state steric effect where the sterically demanding −C(CH3)3 group forces an unfavorable (misdirected) orientation for Mdπ-Spπ bonding, but a favorable orientation with respect to CpR and ClR steric interactions. However, the solid-state structures of (η5-C5H5)2Zr(SR)2 (R = −CH3, −CH2CH3, −CH(CH3)2, −C(CH3)3) (2a–d) exhibit regular variation of their metric parameters as evidenced by their Zr-S-C bond angles of 108, 109, 113, and 124° and S-Zr-S′ bond angles of 97, 99, 100 and 106°, respectively. Neither the S′-Zr-S-R torsion angles nor the dihedral angles that describe the relationship between the S/Zr/S′ and Cp(centroid)/Zr/Cp′ (centroid) planes (both indicators of the relative orientation of the Zr dπ acceptor orbital and the thiolate S pπ donor orbital) reflect the steric demand of the R group. Thus, the size of the R group imposes a measured effect on the geometry of 2 and the tert-butyl group is not extraordinary. Although the enthalpic and entropic effects could not be deconvoluted for rotation about the Zr-S bond of 1 in the present study, literature precedents suggest that both enthalpic and entropic effects may play a role in determining the irregular trend that is observed.  相似文献   

13.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

14.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

15.
The reaction of Wilkinson's catalyst with NaOAr in toluene cleanly affords the corresponding aryloxide complexes Rh(PPh3)3OAr (1). In solution, 1 exists in equilibrium with PPh3 and the corresponding Rh(PPh3)2(π-ArO) (2). The addition of HOAr shifts the equilibrium completely toward the corresponding adducts 2·2HOAr, due to hydrogen bonding between the oxygen atom of the π-coordinated OAr ligand and two molecules of HOAr. Heating of 1a-d in toluene at 60–80°C leads to the elimination of HOAr with concomitant cyclometallation of a phenyl ring of one PPh3 ligand, affording mixtures of 1,2·2HOAr, a cyclometallated Rh complex and PPh3. At room temperature, a reverse reaction slowly occurs to give equilibrium mixtures of 1, 2 and PPh3. Complexes 1 readily with water, CO and H2, affording Rh2(PPh3)4(μ-OH)2, Rh(PPh3)2(CO)OAr (3) and HRh(PPh3)3, respectively. The latter complex was also obtained when complexes 1 were treated with methanol. The structures of the phenoxide complexes 1 and 2·2PhOH and of p-nitrophenoxide complex 3 were established by X-ray diffraction.  相似文献   

16.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

17.
The methanothermal reactions of M(CO)6 (M = Mo, W) with Na2S2 gave a series of homonuclear clusters [{M(CO)4}n(MS4)]2− (M=Mo, W; N=1, 2), i.e. (Ph4P)2[(CO)4Mo(MoS4)] (I), (Ph4P)2[(CO)4W(WS4)] (II), (Ph4P)2[(CO)4Mo(MoS4)Mo(CO)4] (III) and (Ph4P)2[(CO)4W(WS4)W(CO)4] (IV). The two dimers, I and II, as well as the two trimers, III and IV, are isostructural to each other, respectively. All compounds crystallize in the triclinic space group with Z=2. The cell dimensions are: a=12.393(8), b=19.303(9), c=11.909(6) Å, =102.39(5), β=111.54(5), γ=73.61(5)°, V=2522(3) Å3 at T=23 °C for I; a=12.390(3), b=19.314(4), c=11.866(2) Å, =102.66(2), β=111.49(1), γ=73.40(2)°, V=2511(1) Å3 at T=23 °C for II; a=11.416(3), b=22.524(4), c=10.815(4) Å, =91.03(2), β=100.57(3), γ=88.96(2)°, V=2733(1) Å3 at T=−100 °C for III, a=11.498(1), b=22.600(4), c=10.864(3) Å, =90.92(2), β=100.85(1), γ=88.58(1)°, V=2771(2) Å3 at T=23 °C for IV. The dimers are each formed by the coordination of the tetrathiometalate as a bidentate chelating ligand to an M(CO)4 fragment while addition of another M(CO)4 fragment to the dimers results in the trimers. All compounds contain both tetrahedral and octahedral metal centers with the formal 6+ and 0 oxidation states, respectively.  相似文献   

18.
Protonation of Na3[Ta(CO)5] in liquid ammonia provides the thermally unstable Na[Ta(CO)5NH3], which may be isolated as the crystalline and deep violet salt [Ph4As][Ta(CO)5NH3]. Sodium amminepentacarbonyltantalate(1−) reacts with PMe3, PPh3, P(OMe)3, AsPh3, SbPh3, CNtBu and CN at about 0°C in NH3/THF to give exclusively the corresponding [Ta(CO)5L]z. These have been isolated as tetraethylammonium salts in 54–84% yields.  相似文献   

19.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

20.
The luminescence and absorption properties of [Re(bpy)(CO)4](PF6) and [Re(phen)(CO)4](PF6) are consistent with representation of the lowest excited states as nominally 3LC with an admixture of 1CT character. Using high resolution spectroscopic techniques at cryogenic temperatures, such as luminescence line narrowing spectroscopy or spectroscopy in single crystals, the vibrational sideband information which is normally lost in the ‘natural’ solution environment can be observed in the luminescence and absorption spectra. Mixing between the 3LC and 1CT excitation (3%) has previously been reported in [Re(bpy)(CO)4](PF6), resulting in metal-ligand sidebands at 184 and 198 cm−1 in the absorption spectrum and a short luminescence lifetime (33.0 μs). In the luminescence spectra (line narrowed) the metal-ligand sidebands are observed at 194 cm−1. Weak mixing ( 1%) of the 1CT excitation (32 100 cm−1) with the 3LC excitation (22 100 cm−1) in [Re(phen)(CO)4](PF6) gives rise to the observation of metal-ligand vibrational sidebands in the luminescence spectrum (204 cm−1) and a luminescence lifetime of τ= 295±5 μs at 20 K. A spin-orbit mixing matrix element of 3LC|Hso|1CT for [Re(phen)(CO)4](PF6) of 65 cm−1 is calculated, compared to 261 cm−1 in [Re(bpy)(CO)4](PF6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号