首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ribonuclease P Database.   总被引:12,自引:10,他引:12       下载免费PDF全文
Ribonuclease P is responsible for the 5'-maturation of tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria (and some Archaea) the RNA subunit alone is catalytically active in vitro, i.e. it is a ribozyme. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models and accessory information, available via the World Wide Web at the following URL: http://www.mbio.ncsu.edu/RNaseP/home .html  相似文献   

2.
The Ribonuclease P database.   总被引:4,自引:0,他引:4       下载免费PDF全文
The Ribonuclease P Sequence database is a compilation of RNase P sequences, sequence alignments, secondary structures, three-dimensional models, and accessory information. In its initial form, the database contains information on RNase P RNA in bacteria and archaea, and RNase P protein in bacteria. The sequences themselves are presented phylogenetically ordered and aligned. The database also contains secondary structures of bacterial and archaeal RNAs, including specially annotated 'reference' secondary structures of Escherichia coli and Bacillus subtilis RNase P RNAs, a minimum phylogenetic consensus structure, and coordinates for models of three-dimensional structure.  相似文献   

3.
Ribonuclease P. Postscript.   总被引:1,自引:0,他引:1  
  相似文献   

4.
Ribonuclease P     
The gene coding for the RNA subunit of ribonuclease P (RNase P) is essential in all free-living organisms. The RNA subunit, itself, is an enzyme and, from its evolutionary tree, we can infer that it is a very ancient molecule. The specificity of this enzyme is that it cleaves other RNA molecules at the junction of single-stranded and the 5' end of double-stranded regions of RNA. One can speculate that this molecule was very useful in an ancient world in cleaving long pieces of RNA, which must have contained hairpin regions in it, into shorter molecules with the capability of different functions from the longer parent. Today, the specificity of the enzyme can be used in designing drug therapies.  相似文献   

5.
Ribonuclease P: function and variation.   总被引:13,自引:0,他引:13  
  相似文献   

6.
Ribonuclease P RNA and protein subunits from bacteria.   总被引:15,自引:4,他引:11       下载免费PDF全文
  相似文献   

7.
An important approach to understanding RNA-based catalytic function by ribonuclease P is the investigation of its evolutionary diversity in structure and function. Because RNase P enzymes from all organisms are thought to share common ancestry, the fundamental features of structure and biochemistry should be conserved in all of its modern forms. In contrast to the bacterial enzyme, the RNase P enzymes fromEucarya, organelles, andArchaea are poorly understood. This review describes our nascent understanding of the structure and function of RNase P inArchaea, and how this enzyme compares to its homologs in the other evolutionary Domains.Abbreviations RNase P ribonuclease P - tRNA transfer RNA - pre-tRNA 5-unprocessed precursor transfer RNA - Archaea a.k.a. archaebacteria - Bacteria a.k.a. eubacteria - Eucarya a.k.a. eukaryotic nucleus/cytoplasm  相似文献   

8.
The ribonucleoprotein ribonuclease P catalyzes the hydrolysis of a specific phosphodiester bond in precursor tRNA to form the mature 5' end of tRNA. Recent studies have shed light on the structures of RNase-P-RNA-P-protein and RNase-P-RNA-precursor-tRNA complexes, as well as on the positions of catalytic metal ions, emphasizing the importance of the structure to the catalytic function.  相似文献   

9.
10.
RNase P consists of both protein and RNA subunits in all organisms and organelles investigated so far, with the exception of chloroplasts and plant nuclei where no enzyme-associated RNA has been detected to date. Studies on substrate specificity revealed that cleavage by plant nuclear RNase P is critically dependent on a complete and intact structure of the substrate. No clearcut answer is yet possible regarding the order of processing events at the 5 or 3 end of tRNAs in the case of nuclear or chloroplast processing enzymes. RNase P from a phylogenetically ancient photosynthetic organelle will be discussed in greater detail: The enzyme from theCyanophora paradoxa cyanelle is the first RNase P from a photosynthetic organelle which has been shown to contain an essential RNA subunit. This RNA is strikingly similar to its counterpart from cyanobacteria, yet it lacks catalytic activity. Properties of the holoenzyme suggest an intermediate position in RNA enzyme evolution, with an eukaryotic-type, inactive RNA and a prokaryotic-type small protein subunit. The possible presence of an RNA component in RNase P from plant nuclei and modern chloroplasts will be discussed, including a critical evaluation of some criteria that have been frequently applied to elucidate the subunit composition of RNase P from different organisms.Abbreviations RNase P Ribonuclease P - (pre-)tRNA transfer ribonucleic acid (precursor) - tRNA Ser (- Tyr , - Phe ) transfer ribonucleic acid specific for serine (tyrosine, phenylalanine) - CyRP RNA RNA component of cyanelle RNase P  相似文献   

11.
Ribonuclease P (RNase P) is the ribonucleoprotein endonuclease that processes the 5' ends of precursor tRNAs. Bacterial and eukaryal RNase P RNAs had the same primordial ancestor; however, they were molded differently by evolution. RNase P RNAs of eukaryotes, in contrast to bacterial RNAs, are not catalytically active in vitro without proteins. By comparing the bacterial and eukaryal RNAs, we can begin to understand the transitions made between the RNA and protein-dominated worlds. We report, based on crosslinking studies, that eukaryal RNAs, although catalytically inactive alone, fold into functional forms and specifically bind tRNA even in the absence of proteins. Based on the crosslinking results and crystal structures of bacterial RNAs, we develop a tertiary structure model of the eukaryal RNase P RNA. The eukaryal RNA contains a core structure similar to the bacterial RNA but lacks specific features that in bacterial RNAs contribute to catalysis and global stability of tertiary structure.  相似文献   

12.
13.
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.  相似文献   

14.
Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme   总被引:8,自引:0,他引:8  
Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.  相似文献   

15.
16.
17.
RNases are important enzymes of cell metabolism, influencing gene expression, affecting cell growth and differentiation, and participating in cell defense against pathogens and induction of apoptosis. Since RNases mostly occur in complex with their inhibitors in the cell, the inhibitors also play a role in the above processes. The review considers natural protein RNase inhibitors of animals, plants, and bacteria, as well as synthetic low-molecular-weight inhibitors. Special emphasis is placed on the prospective use of RNase inhibitors in the therapy of cancer and allergy. While RNases are widespread, the number of the available natural and synthetic inhibitors is limited. A pressing problem is to design highly effective low-molecular-weight inhibitors of the RNase activity of angiogenin and eosinophil-associated RNases for anticancer and antiallergy therapy.  相似文献   

18.
Bacterial ribonuclease P RNA ribozyme can do the hyperprocessing reaction, the internal cleavage reaction of some floppy eukaryotic tRNAs. The hyperprocessing reaction can be used as a detection tool to examine the stability of the cloverleaf shape of tRNA. Until now, the hyperprocessing reaction has been observed in the heterologous combination of eukaryotic tRNAs and bacterial RNase P enzymes. In this paper, we examined the hyperprocessing reaction of Escherichia coli tRNAs by homologous E. coli RNase P, to find that these homologous tRNAs were resistant to the toxic hyperprocessing reaction. Our results display the evidence for molecular co-evolution between homologous tRNAs and RNase P in the bacterium E. coli.  相似文献   

19.
20.
Transfer RNA is an essential molecule for biological system, and each tRNA molecule commonly has a cloverleaf structure. Previously, we experimentally showed that some Drosophila tRNA (tRNAAla, tRNAHis, and tRNAi Met) molecules fit to form another, non-cloverleaf, structure in which the 3'-half of the tRNA molecules forms an alternative hairpin, and that the tRNA molecules are internally cleaved by the catalytic RNA of bacterial ribonuclease P (RNase P). Until now, the hyperprocessing reaction of tRNA has only been reported with Drosophila tRNAs. This time, we applied the hyperprocessing reaction to one of human tRNAs, human tyrosine tRNA, and we showed that this tRNA was also hyperprocessed by E. coli RNase P RNA. This tRNA is the first example for hyperprocessed non-Drosophila tRNAs. The results suggest that the hyperprocessing reaction can be a useful tool to detect destablized tRNA molecules from any species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号