首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two gamma-radiation-resistant bacterial strains, designated C1T and C2, were isolated from a soil sample collected at Jeongeup-Si, South Korea. These strains were observed to be Gram-negative, non-motile, rod-shaped, and to form pink colonies. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains belong to the genus Deinococcus in the family Deinococcaceae. Strains C1T and C2 have the highest sequence similarities with Deinococcus daejeonensis MJ27T (97.56 %) and Deinococcus grandis DSM 39663T (97.50 %). Like other members of the genus Deinococcus, the novel isolates showed resistance to gamma-radiation with a D10 value in excess of 8 kGy. The isolates were found to have menaquinone MK-8 as the predominant respiratory quinone and an unidentified phosphoglycolipid as major polar lipid. In addition, the most abundant fatty acids of strain C1T were identified as C15:1 ω6c (25.5 %), C16:1 ω7c (18.7 %) and C15:0 (9.7 %). Genomic analysis results showed that the DNA G+C contents of strain C1T and C2 are 68.59 and 68.57 %, respectively. Taken together, the polyphasic taxonomic data support the proposal that the isolates C1T and C2 represent a novel species of the genus Deinococcus, for which the name Deinococcus radiotolerans sp. nov. is proposed. The type strain is a strain C1T (=KCTC 33150T = JCM 19173T).  相似文献   

2.
A Gram-stain positive, non-motile, spherical, red-pigmented and facultatively anaerobic bacterium, designated strain 6.1T, was isolated from a crude oil recovery water sample from the Huabei oil field in China. The novel strain exhibited tolerance of UV irradiation (> 1000 J m?2). Based on 16S rRNA gene sequence comparisons, strain 6.1T shows high similarity to Deinococcus citri DSM 24791T (98.1%) and Deinococcus gobiensis I-0T (97.8%), with less than 93.5% similarity to other closely related taxa. The major cellular fatty acids were identified as summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), followed by iso-C17:1 ω9c and C16:0. The polar lipid profile was found to contain phospholipids, glycolipids, phosphoglycolipids and aminophospholipids. The predominant respiratory quinone was identified as MK-8. The DNA G + C content was determined to be 68.3 mol %. DNA–DNA hybridization between strain 6.1T and D. citri DSM 24791T was 45.6 ± 7.1% and with D. gobiensis I-OT was 36.6 ± 4.7%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, we conclude strain 6.1T represents a novel species of the genus Deinococcus, for which we propose the name Deinococcus petrolearius sp. nov. The type strain is 6.1T (= CGMCC 1.15053T = KCTC 33744T).  相似文献   

3.
Strain 16F1ET was isolated from a 3-kGy-irradiated sediment sample collected at Han River in Seoul, Republic of Korea. Cells of this strain were observed to be Gram-positive, pililike structure, and short rod shape, and colonies were red in color. The strain showed the highest degree of 16S rRNA gene sequence similarity to Deinococcus aquaticus PB314T (98.8%), Deinococcus depolymerans TDMA-24T (98.1%), Deinococcus caeni Ho-08T (98.0%), and Deinococcus grandis DSM 3963T (97.0%). 16S rRNA gene sequence analysis identified this strain as a member of the genus Deinococcus (Family: Deinococcaceae). The genomic DNA G+C content of strain 16F1ET was 66.9 mol%. The low levels of DNA-DNA hybridization (< 56.2%) with the species mentioned above identified strain 16F1ET as a novel Deinococcus species. Its oxidase and catalase activities as well as the production of acid from glucose were positive. Growth of the strain was observed at 10–37°C (optimum: 20–30°C) and pH 4–10 (optimum: pH 7–8). The cells tolerated less than 5% NaCl and had low resistance to gamma radiation (D10 < 4 kGy). Strain 16F1ET possessed the following chemotaxonomic characteristics: C16:0, C15:1ω6c, and C16:1ω7c as the major fatty acids; phosphoglycolipid as the predominant polar lipid; and menaquinone-8 as the predominant respiratory isoprenoid quinone. Based on the polyphasic evidence, as well as the phylogenetic, genotypic, phenotypic, and chemotaxonomic characterization results, strain 16F1ET (=KCTC 33793T =JCM 31404T) is proposed to represent the type strain of a novel species, Deinococcus seoulensis sp. nov.  相似文献   

4.
Strain 16F3HT, a Gram-negative, aerobic, non-motile, and oval-shaped bacterium, was isolated from river water collected from the Han River in South Korea. Growth of strain 16F3HT was observed at 10–42 °C (optimum at 25–30 °C), but no growth occurred at 4 °C. The strain is able to grow at pH 4–10 (optimum at pH 7–8) and tolerates up to 4% NaCl (w/v), with optimum growth at 0.5% NaCl. The isolate was found to be resistant to UV irradiation. Based on 16S rRNA gene sequence analysis, it is closely related to ‘Deinococcus seoulensis’ 16F1E (98.8%), Deinococcus aquaticus PB314T (98.1%) and Deinococcus caeni Ho-08T (98.0%). The level of DNA–DNA homology between the novel strain and the three related strains was 57.4, 41.2, and 35.8%, respectively. Chemotaxonomic data revealed that strain 16F3HT possesses MK-8 as the predominant respiratory quinone, an unidentified phosphoglycolipid as the major polar lipid, and C15:1 ω6c and C16:1 ω7c as the major fatty acids. The DNA G + C content was determined to be 65.7 mol%. Based on polyphasic evidence, strain 16F3HT (=KCTC 33794T = JCM 31406T) should be classified as the type strain of a novel Deinococcus species, for which the name Deinococcus knuensis sp. nov. is proposed.  相似文献   

5.
A white-coloured bacterium, designated strain GTJR-20T, was isolated from a stem of Phytolacca acinosa Roxb. collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. The novel isolate was found to grow optimally at 28–30 °C, at pH 7.5–8.0 and in the absence of NaCl. Cells were observed to be Gram-stain positive, strictly aerobic, rod-shaped and non-motile. The predominant respiratory quinone was identified as MK-7(H4) and the major cellular fatty acids were identified as iso-C16:0 (35.8 %), C18:1 ω9c (17.7 %), C17:1 ω6c (11.0 %), C17:1 ω8c (7.8 %) and C18:3 ω6c (6, 9, 12) (7.2 %). The DNA G+C content was determined to be 71.6 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GTJR-20T is a member of the genus Solirubrobacter and is closely related to Solirubrobacter phytolaccae GTGR-8T (16S rRNA gene sequence similarity, 98.4 %), Solirubrobacter soli KCTC 12628T (97.8 %), Solirubrobacter pauli KCTC 9974T (97.7 %) and Solirubrobacter ginsenosidimutans KCTC 19420T (97.6 %). No other recognized bacterial species showed more than 94.6 % 16S rRNA gene sequence similarity to the novel isolate. DNA–DNA relatedness values for strain GTJR-20T with respect to its closely related neighbours S. phytolaccae GTGR-8T, S. soli KCTC 12628T, S. pauli KCTC 9974T and S. ginsenosidimutans KCTC 19420T were 48.3 ± 8.6, 21.3 ± 5.2, 36.8 ± 6.2 and 36.0 ± 5.5 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain GTJR-20T is considered to represent a novel species of the genus Solirubrobacter, for which the name Solirubrobacter taibaiensis sp. nov. is proposed. The type strain is GTJR-20T (=CCTCC AB 2013308T = KCTC 29222T).  相似文献   

6.
A Gram-negative, short-rod-shaped bacterial strain with gliding motility, designated as DG5AT, was isolated from a rice field soil in South Korea. Phylogenic analysis using 16S rRNA gene sequence of the new isolate showed that strain DG5AT belong to the genus Spirosoma in the family Spirosomaceae, and the highest sequence similarities were 95.5 % with Spirosoma linguale DSM 74T, 93.4 % with Spirosoma rigui WPCB118T, 92.8 % with Spirosoma luteum SPM-10T, 92.7 % with Spirosoma spitsbergense SPM-9T, and 91.9 % with Spirosoma panaciterrae Gsoil 1519T. Strain DG5AT revealed resistance to gamma and UV radiation. Chemotaxonomic data showed that the most abundant fatty acids were summed feature C16:1 ω7c/C16:1 ω6c (36.90 %), C16:1 ω5c (29.55 %), and iso-C15:0 (14.78 %), and the major polar lipid was phosphatidylethanolamine (PE). The DNA G+C content of strain DG5AT was 49.1 mol%. Together, the phenotypic, phylogenetic, and chemotaxonomic data supported that strain DG5AT presents a novel species of the genus Spirosoma, for which the name Spirosoma radiotolerans sp. nov., is proposed. The type strain is DG5AT (=KCTC 32455T = JCM19447T).  相似文献   

7.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

8.
The taxonomic status of a moderately halophilic bacterium, strain N4T, isolated from soil of a chicken farm in China was determined. It was Gram-negative, non-spore-forming, motile, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequence indicated that this strain belonged to the genus Salinicola, as it showed the highest sequence similarities to Salinicola salaries M27T (98.3 %), Salinicola socius SMB35T (98.1 %), and Salinicola halophilus CG4.1T (98.1 %). The major cellular fatty acids were C16:0 (25.6 %), C18:1ω7c (35.0 %), and C19:0 cyclo ω8c (11.9 %), which are properties shared by members of the genus Salinicola. The DNA G+C content of strain N4T was 69.1 mol %. The level of DNA–DNA relatedness between strain N4T and the other three type strains of the genus of Salinicola salaries M27T, Salinicola socius SMB35T, and Salinicola halophilus CG4.1T were 34.3, 28.7, and 26.9 %, respectively. Based on the results of phenotypic, chemotaxonomic, DNA–DNA relatedness, and phylogenetic analysis, strain N4T should be classified as a novel species of the genus Salinicola, for which the name Salinicola zeshunii sp. nov. is proposed, with strain N4T (=KACC 16602T = CCTCC AB 2012912T) as the type strain.  相似文献   

9.
A novel Gram-positive, oval-shaped, non-motile bacterium designated strain 16F1LT was isolated from sediment collected from the Han River in Seoul, Republic of Korea. Based on the 16S rRNA gene sequence (1,448 bp), this strain was identified as a member of the genus Deinococcus that belongs to the class Deinococci. Similarities in the 16S rRNA gene sequence were shown with Deinococcus daejeonensis MJ27T (99.0%), D. grandis DSM 3963T (98.1%), D. radiotolerans C1T (97.5%), and D. caeni Ho-08T (97.2%). Strain 16F1LT was classified as a different genomic species from closely related Deinococcus members, based on less than 70% DNA-DNA relatedness. Genomic DNA G+C content of strain 16F1LT was 67.2 mol%. Strain 16F1LT was found to grow at temperatures of 10–37°C (optimum 25°C) and pH 7–8 (optimum pH 7) on R2A medium, and was catalase-positive and oxidase-negative. Strain 16F1LT showed resistance to gamma radiation (D10 > 2 kGy). In addition, this strain had the following chemotaxonomic characteristics: the major fatty acids were C15:1ω6c and C16:1ω7c; the polar lipid profile contained phosphoglycolipids, unknown aminophospholipids, an unknown aminoglycolipid, unknown aminolipids, an unknown glycolipid, an unknown phospholipid, and an unknown polar lipid; the major quinone was MK-8. Phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicated that strain 16F1LT represents a novel species within the genus Deinococcus, for which the name Deinococcus sedimenti sp. nov. is proposed. The type strain is 16F1LT (=KCTC 33796T =JCM 31405T).  相似文献   

10.
A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15–35 °C (optimum, 25–30 °C) and pH 6–11 (optimum, 7.5–8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA–DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G?+?C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (=?CCTCC AB 2016294T?=?KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.  相似文献   

11.
A Gram stain-negative, strictly aerobic, rod-shaped, non-motile and deep-yellow-coloured bacterial strain, designated ZFJR-3T, was isolated from the stem of Geum aleppicum Jacq. collected from Taibai Mountain in Shaanxi Province, north-west China, and characterized by using a polyphasic approach. The novel isolate grew optimally at 25–28 °C and in the absence of NaCl. Flexirubin-type pigments were produced. The predominant respiratory quinone was ubiquinone-8 (Q-8) and the major cellular fatty acids were iso-C15:0 (29.2 %), iso-C16:0 (18.5 %), summed feature 9 (comprising iso-C17:1 ω9c and/or C16:0 10-methyl; 8.8 %), C16:1 ω7c alcohol (8.8 %), iso-C11:0 3-OH (6.9 %) and iso-C11:0 (6.8 %). The DNA G+C content was 66.1 mol %. The only polyamine was spermidine and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ZFJR-3T belongs to the genus Pseudoxanthomonas and was most closely related to Pseudoxanthomonas yeongjuensis KCTC 22757T (16S rRNA gene sequence similarity, 99.0 %) and Pseudoxanthomonas sacheonensis KCTC 22080T (98.0 %). The levels of 16S rRNA gene sequence similarity with respect to other Pseudoxanthomonas species with validly published names were less than 96.5 %. DNA–DNA relatedness values for strain ZFJR-3T with respect to its closely related neighbours P. yeongjuensis KCTC 22757T and P. sacheonensis KCTC 22080T were 48.7 and 36.3 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain ZFJR-3T is considered to represent a novel species of the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas gei sp. nov. is proposed. The type strain is ZFJR-3T (=CCTCC AB 2013020T =KCTC 32298T).  相似文献   

12.
A taxonomic study was carried out on strain 22II-S11-z7T, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase negative and catalase positive, long-rod shaped, and gliding. Growth was observed at salinities of 1–5 % and at temperatures of 10–41 °C. The isolate was capable of hydrolysing gelatin and Tween 80 and able to reduce nitrate to nitrite, but unable to degrade aesculin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z7T belongs to the genus Aquimarina, with highest sequence similarity to Aquimarina megaterium XH134T (98.31 %), followed by Aquimarina macrocephali JAMB N27T (96.59 %); other species of the genus Aquimarina shared 93.63–96.08 % sequence similarity. The ANI value between strain 22II-S11-z7T and A. megaterium XH134T was found to be 91.86–91.81 %. The DNA–DNA hybridization estimated value between strain 22II-S11-z7T and A. megaterium XH134T was 47.7 ± 2.6 %. The principal fatty acids were identified as Summed Feature 3 (C16:1 ω7c/ω6c, as defined by the MIDI system; 8.1 %), SummedFeature 9 (iso-C17:1 ω7c/C16:110-methyl; 6.8 %), iso-C15:0 G (11.3 %), iso-C15:0 (24.9 %), iso-C16:0 (5.7 %), C16:0 (5.2 %), iso-C15:0 3OH (6.4 %) and iso-C17:0 3OH (21.5 %). The G+C content of the chromosomal DNA was determined to be 32.99 mol %. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, five unidentified phospholipids and two unidentified lipids were found to be present. The combined genotypic and phenotypic data show that strain 22II-S11-z7T represents a novel species within the genus Aquimarina, for which the name Aquimarina atlantica sp. nov. is proposed, with the type strain 22II-S11-z7T (=MCCC 1A09239T = KCTC 42003T).  相似文献   

13.
A Gram-staining-negative, rod-shaped and motile with several polar flagellums bacterium, designated WM-3T, was isolated from a rice paddy soil in South China. Growth occurred with 0–3.0 % (w/v) NaCl (optimum 2.0 %), at pH 5.5–9.0 (optimum pH 7.0) and at 25–42 °C (optimum 30–37 °C) in liquid Reasoner’s 2A medium. Analysis of the 16S rRNA gene and gyrB gene sequences revealed that strain WM-3T was most closely related to the type strains of the species Pseudomonas linyingensis and Pseudomonas sagittaria. Its sequence similarities with P. linyingensis CGMCC 1.10701T and P. sagittaria JCM 18195T were 97.4 and 97.3 %, respectively, for 16S rRNA gene, and were 94.1 and 94.2 %, respectively, for gyrB gene. DNA–DNA hybridization between strain WM-3T and these two type strains showed relatedness of 35.6 and 30.9 %, respectively. G+C content of genomic DNA was 69.4 mol%. The whole-cell fatty acids mainly consisted of C16:0 (30.0 %), C16:1 ω6c and/or C16:1 ω7c (19.3 %) and C18:1 ω6c and/or C18:1 ω7c (16.3 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain WM-3T belongs to genus Pseudomonas but represents a novel species, for which the name Pseudomonas oryzae sp. nov. is proposed. The type strain is WM-3T (=KCTC 32247T =CGMCC 1.12417T).  相似文献   

14.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

15.
16.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

17.
A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 6Alg 8T, was isolated from the common Pacific green alga Ulva fenestrata. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Polaribacter, a member of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 97.6 % to Polaribacter dokdonensis DSW-5T and 92.8–96.1 % to other recognized Polaribacter species. The prevalent fatty acids of strain 6Alg 8T were iso-C15:0, iso-C15:1, iso-C15:0 2-OH, C15:0 and C15:1ω6. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, two unknown aminolipids and one unknown lipid. The DNA G+C content of the type strain is 31.6 mol%. The new isolate and the type strains of recognized species of the genus Polaribacter were readily distinguished based on a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Polaribacter, for which the name Polaribacter reichenbachii sp. nov. is proposed. The type strain is 6Alg 8T (= KCTC 23969T = KMM 6386T = LMG 26443T).  相似文献   

18.
A novel Gram-negative, motile, rod-shaped, facultative anaerobic bacterial strain, KMK6T, was isolated from soil contaminated with textile dyes from an industrial estate located at Ichalkaranji, Maharashtra, India, and its taxonomical position was established by using a polyphasic approach. The major cellular fatty acids included C17:1ω8c, summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH), C17:0, C16:0, and C18:1ω7c. The DNA G+C content of strain KMK6T was 48.8 mol %. 16S rRNA gene sequence analysis confirmed its placement in the genus Alishewanella, and exhibited sequence similarity levels of below 97 % to the type strains of validly published Alishewanella species. On the basis of genotypic and phenotypic evidence, strains KMK6T is considered to be a novel species of the genus Alishewanella, for which we propose that strain KMK6T (=NCIM 5295T =BCRC 17848T) is assigned to a novel species, Alishewanella solinquinati sp. nov.  相似文献   

19.
A Gram-negative, rod-shaped, slightly halophilic and facultatively anaerobic bacterium, designated strain D15-8WT, was isolated from the sediment of the South China Sea. Growth was found to occur optimally at 25 °C, between pH 7.0 and 8.0 and with 1–5 % (w/v) NaCl. The strain was observed to utilize a variety of organic substrates and polycyclic aromatic hydrocarbons as sole carbon sources. The G+C content of the genomic DNA was determined to be 58.7 %. The predominant respiratory quinone was found to be Q-9. The significant fatty acids were determined to be C16:0, C16:1 ω9c, C18:1 ω9c, C12:0 and C14:0 3OH. Analysis of 16S rRNA gene sequences showed that strain D15-8WT fits within the phylogenetic cluster of the genus Marinobacter and is most closely related to Marinobacter segnicrescens CGMCC 1.6489T, Marinobacter bryozoorum DSM 15401T, Marinobacter lacisalsi CECT 7297T and Marinobacter daqiaonensis CGMCC1.9167T. The DNA–DNA hybridization values between strain D15-8WT and the type strains of the most closely related species were 42.3 % (CGMCC 1.6489T), 39.8 % (DSM 15401T), 37.3 % (CECT 7297T) and 35.2 % (CGMCC1.9167T). The results of this polyphasic study indicate that strain D15-8WT represents a novel species of the genus Marinobacter, for which the name Marinobacter nanhaiticus sp. nov. is proposed. The type strain is D15-8WT (=CGMCC 1.11019T=KCTC 23749T).  相似文献   

20.
Strain DY59T, a Gram-positive non-motile bacterium, was isolated from soil in South Korea, and was characterized to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain DY59T revealed that the strain DY59T belonged to the family Deinococcaceae in the class Deinococci. The highest degree of sequence similarities of strain DY59T were found with Deinococcus radiopugnans KACC 11999T (99.0%), Deinococcus marmoris KACC 12218T (97.9%), Deinococcus saxicola KACC 12240T (97.0%), Deinococcus aerolatus KACC 12745T (96.2%), and Deinococcus frigens KACC 12220T (96.1%). Chemotaxonomic data revealed that the predominant fatty acids were iso-C15:0 (19.0%), C16:1 ω7c (17.7%), C15:1 ω6c (12.6%), iso-C17:0 (10.3%), and iso-C17:1 ω9c (10.3%). A complex polar lipid profile consisted of a major unknown phosphoglycolipid. The predominant respiratory quinone is MK-8. The cell wall peptidoglycan contained D-alanine, L-glutamic acid, glycine, and L-ornithine (di-amino acid). The novel strain showed resistance to gamma radiation, with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain DY59T (=KCTC 33033T =JCM 18581T) should be classified as a type strain of a novel species, for which the name Deinococcus swuensis sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号