首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Dopamine receptor localization in the mammalian retina   总被引:5,自引:0,他引:5  
After a short history of dopamine receptor discovery in the retina and a survey on dopamine receptor types and subtypes, the distribution of dopamine receptors in the retinal cells is described and correlated with their possible role in cell and retinal physiology. All the retinal cells probably bear dopamine receptors. For example, the recently discovered D1B receptor has a possible role in modulating phagocytosis by the pigment epithelium and a D4 receptor is likely to be involved in the inhibition of melatonin synthesis in photoreceptors. Dopamine uncouples horizontal and amacrine cell-gap junctions through D1-like receptors. Dopamine modulates the release of other transmitters by subpopulations of amacrine cells, including that of dopamine through a D2 autoreceptor. Ganglion cells express dopamine receptors, the role of which is still uncertain. Müller cells also are affected by dopamine. A puzzling action of dopamine is observed in the ciliary retina, in which D1- and D2-like receptors are likely to be involved in the cyclic regulation of intraocular pressure. Most of the dopaminergic actions appears to be extrasynaptic and the signaling pathways remain uncertain. Further studies are needed to better understand the multiple actions of dopamine in the retina, especially those that implicate rhythmic regulations.  相似文献   

3.
The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors→bipolar cells→ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons requires melanopsin and that the response is mediated by AMPA-type glutamate receptors, defining a retrograde retinal visual signaling pathway that fully reverses the usual flow of light signals in retinal circuits.  相似文献   

4.
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT(1)) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT(1) receptors may play an important role in retinal physiology. Indeed, we have recently reported that absence of the MT(1) receptors has a dramatic effect on the regulation of the daily rhythm in visual processing, and on retinal cell viability during aging. We have also shown that removal of MT(1) receptors leads to a small (3-4 mmHg) increase in the level of the intraocular pressure during the night and to a significant loss (25-30%) in the number of cells within the retinal ganglion cell layer during aging. In the present study we investigated the cellular distribution in the C3H/f(+/+) mouse retina of MT(1) receptors using a newly developed MT(1) receptor antibody, and then we determined the role that MT(1) signaling plays in the circadian regulation of the mouse electroretinogram, and in the retinal dopaminergic system. Our data indicate that MT(1) receptor immunoreactivity is present in many retinal cell types, and in particular, on rod and cone photoreceptors and on intrinsically photosensitive ganglion cells (ipRGCs). MT(1) signaling is necessary for the circadian rhythm in the photopic ERG, but not for the circadian rhythm in the retinal dopaminergic system. Finally our data suggest that the circadian regulation of dopamine turnover does not drive the photopic ERG rhythm.  相似文献   

5.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

6.
An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types.  相似文献   

7.
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell’s membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON–OFF and sustained–transient ganglion cell dichotomy in both nonmammalian and mammalian retina.  相似文献   

8.
In subjects with normal vision, we studied the relationship between the axial length of the eye and the amplitude-temporal characteristics of different types of ganzfield ERG. The amplitude of the ERG had the highest variability in the middle of the range of the axial eye lengths. The variability decreased at both ends of the range. With increasing axial length, the amplitude of the b-wave of all types of ERG decreased, and the latency decreased concurrently. The b-wave reflects the activity of the retinal ON-neurones depolarizing in response to the light stimulus. We assume that the decrease in the amplitude of b-wave may be related to the decreased number of photoreceptors and of neurons in the following retinal levels and/or increased inhibition in proximal retina, as well as an increase in relative activity of retinal OFF-neurones hyperpolarizing in response to the light stimulus.  相似文献   

9.
In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs.  相似文献   

10.
Serotonin N-acetyltransferase (NAT) activity and melatonin show a daily rhythm with high levels at night. Although the rhythmic properties of NAT and melatonin are similar in pineal gland and retina, great differences in the light perception and transmission mechanisms exist. We have analyzed the effects of adrenergic and dopaminergic agents on greenfrog (Rana perezi) eyecup culture, in order to identify the receptors involved in the regulation of retinal melatonin synthesis. A D2-like receptor is directly involved in the regulation of NAT activity and melatonin release in R. perezi retina. Quinpirole mimics the effect of light, reducing the darkness-stimulated NAT activity and melatonin release, while sulpiride antagonized these actions. Neither D1-agonist (SKF 38393) nor D1-antagonist (SCH 23390) had effect on NAT activity. However, a significant inhibition of darkness-evoked melatonin release was produced by SKF 38393 after 6 hours of culture. The beta- and antagonist1-agonists showed a clear inhibition. However, a direct effect of beta, alpha1 and D1-agonists on photoreceptors is unproven, being more probable that the adrenergic actions imply a non-photoreceptor retinal cell. In conclusion, eyecup culture of Rana perezi revealed a dopaminergic control of melatonin synthesis and a possible modulation of dopaminergic tone by adrenergic receptors. Melatonin release is a more sensitive parameter than NAT activity to the action of neuroactive agents, suggesting that melatonin synthesis can be regulated by more than one enzymatic step in Rana perezi.  相似文献   

11.
Characteristics of the electroretinogram (ERG) produced by the essentially all rod eye of the rat are presented as functions of the number of quanta absorbed by each rod per stimulus flash. The ERG's were obtained with 1.5 msec. stimulus flashes and uniform illumination of the entire retina. Under these conditions, distortions in the ERG due to stray light are minimized, and the ERG more accurately reflects the activity of its retinal sources. The effects of background light and two forms of dark adaptation were studied and compared. The results, especially for the b-wave, permit an interpretation in terms of two distinct processes. One process appears to determine the b-wave latency. This process is almost independent of the state of adaptation of the retina. The other process does not affect the latency, but determines the b-wave threshold and amplitude. This process strongly depends upon the state of adaptation. Moreover, the effects of dark adaptation on this amplitude-determining process are almost identical with the effects of background light.  相似文献   

12.
Extrasynaptic release of dopamine is well documented, but its relation to the physiological activity of the neuron is unclear. Here we show that in absence of presynaptic active zones, solitary cell bodies of retinal dopaminergic neurons release by exocytosis packets of approximately 40,000 molecules of dopamine at irregular intervals and low frequency. The release is triggered by the action potentials that the neurons generate in a rhythmic fashion upon removal of all synaptic influences and therefore depends upon the electrical events at the neuronal surface. Furthermore, it is stimulated by kainate and abolished by GABA and quinpirole, an agonist at the D(2) dopamine receptor. Since the somatic receptors for these ligands are extrasynaptic, we suggest that the composition of the extracellular fluid directly modulates extrasynaptic release.  相似文献   

13.
The crucian carp retina was used to study the effects of the melatonin antagonist p697 (N-pentanoyl 2-benzyltryptamine) and the melatonin agonists [+]- and [-]-AMMTC (N-acetyl-4-aminomethyl-6-methoxy-9-methyl-1,2,3,4-tetrahydrocarbazol e) on horizontal cell spinule formation, an indicator of the state of retinal adaptation. DH97 was capable of both counteracting dark-adaptive spinule degradation and inducing light-adaptive spinule formation at the beginning of the dark phase. Addition of dopamine receptor blockers opposed the action of DH97 on spinules, with SCH 23930, a D1 dopamine receptor antagonist, being more effective than the D2 receptor antagonist sulpiride. DH97 induced a twofold increase in dopamine release. We conclude that melatonin acts as a dark signal within the teleost retina by inhibiting the dopaminergic system. In accordance with this, both enantiomers of AMMTC prevented light-induced spinule formation, and reduced dopamine release to below dark-adaptive baseline levels. We suggest that the suppression of spinule formation by AMMTC may be due to either a direct inhibitory interaction between the melatonin agonist and horizontal cell dopamine D1 receptors, or an inhibitory effect on the activity of the dopamine-releasing interplexiform cells.  相似文献   

14.
Retinas of rats, rabbits, chicks and carp possess enzymes, i.e. serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), which convert serotonin (5-HT) to melatonin, NAT activity and melatonin levels, but not HIOMT activity, show distinct circadian rhythms, with peak values occurring during the dark (night) phase of the 12 h light-dark cycle. Exposure of the animals to light at night inhibited the night-stimulated NAT activity. Treatment of rats and rabbits with the dopaminergic agonist, apomorphine, inhibited the retinal NAT activity. Dopamine levels in the rabbit retina showed diurnal variations, with higher contents seen during the light phase of both the 12 h light-dark cycle with lights on between 06:00–18:00, and that with reversed periods of illumination (lights on between 18:00–06:00). Melatonin potently inhibited the electrically-evoked calcium-dependent release of [3H]dopamine from pieces of retina from both albino and pigmented rabbits. Our results indicate that the light-regulated melatonin-generating system does operate in the vertebrate retina. The present data, together with other findings, suggest that in the retina there is an antagonistic interplay between melatonin and dopamine. Thus, melatonin inhibits dopamine synthesis in, and release from, the retinal dopaminergic cells, whilst dopamine inhibits the night (dark)-stimulated melatonin formation by decreasing NAT activity. Since light increases metabolic activity of the retinal dopaminergic cells (it enhances the amine synthesis, levels and release), it seems likely that the retinal dopamine plays a role of a “light” messenger in the inhibition of melatonin synthesis. It is suggested that an interplay between melatonin and dopamine in the retina is responsible for regulation of those retinal events which follow circadian rhythmicity, and/or are dependent on light-dark conditions.  相似文献   

15.
The retinal dopaminergic system appears to play a major role in the regulation of global retinal processes related to light adaptation. Although most reports agree that dopamine release is stimulated by light, some retinal functions that are mediated by dopamine exhibit circadian patterns of activity, suggesting that dopamine release may be controlled by a circadian oscillator as well as by light. Using the accumulation of the dopamine metabolite dihydroxyphenylacetic acid (DOPAC) in the vitreous as a measure of dopamine release rates, we have investigated the balance between circadian- and light control over dopamine release. In chickens held under diurnal light:dark conditions, vitreal levels of DOPAC showed daily oscillations with the steady-state levels increasing nine-fold during the light phase. Kinetic analysis of this data indicates that apparent dopamine release rates increased almost four-fold at the onset of light and then remained continuously elevated throughout the 12h light phase. In constant darkness, vitreal levels of DOPAC displayed circadian oscillations, with an almost two-fold increase in dopamine release rates coinciding with subjective dawn/early morning. This circadian rise in vitreal DOPAC could be blocked by intravitreal administration of melatonin (10 nmol), as predicted by the model of the dark-light switch where a circadian fall in melatonin would relieve dopamine release of inhibition and thus be responsible for the slight circadian increase in dopamine release. The increase in vitreal DOPAC in response to light, however, was only partially suppressed by melatonin. The activity of the dopaminergic amacrine cell in the chicken retina thus appears to be dominated by light-activated input.  相似文献   

16.
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules aggregate and disperse in response to changes in light conditions. Pigment granules aggregate into the RPE cell body in the dark and disperse into the long apical projections in the light. Pigment granule movement retains its light sensitivity in vitro only if RPE is explanted together with neural retina. In the absence of retina, RPE pigment granules no longer move in response to light onset or offset. Using a preparation of mechanically isolated fragments of RPE from green sunfish, Lepomis cyanellus, we investigated the effects of catecholamines on pigment migration. We report here that 3,4-dihydoxyphenylethylamine (dopamine) and clonidine each mimic the effect of light in vivo by inducing pigment granule dispersion. Dopamine had a half-maximal effect at approximately 2 nM; clonidine, at 1 microM. Dopamine-induced dispersion was inhibited by the D2 dopaminergic antagonist sulpiride but not by D1 or alpha-adrenergic antagonists. Furthermore, a D2 dopaminergic agonist (LY 171555) but not a D1 dopaminergic agonist (SKF 38393) mimicked the effect of dopamine. Clonidine-induced dispersion was inhibited by the alpha 2-adrenergic antagonist yohimbine but not by sulpiride. These results suggest that teleost RPE cells possess distinct D2 dopaminergic and alpha 2-adrenergic receptors, and that stimulation of either receptor type is sufficient to induce pigment granule dispersion. In addition, forskolin, an activator of adenylate cyclase, induced pigment granule movement in the opposite direction, i.e., dark-adaptive pigment aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. In the retinal inner nuclear layer of the majority of species, a dopaminergic neuronal network has been visualized in either amacrine cells or the so-called interplexiform cells. 2. Binding studies of retinal dopamine receptors have revealed the existence of both D1- as well D2-subtypes. The D1-subtype was characterized by labeled SCH 23390 (Kd ranging from 0.175 to 1.6 nM and Bmax from 16 to 482 fmol/mg protein) and the D2-subtype by labelled spiroperidol (Kd ranging from 0.087 to 1.35 nM and Bmax from 12 to 1500 fmol/mg protein) and more selectively by iodosulpiride (Kd 0.6 nM and Bmax 82 fmol/mg protein) or methylspiperone (Kd 0.14 nM and Bmax 223 fmol/mg protein). 3. Retinal dopamine receptors have been also shown to be positively coupled with adenylate cyclase activity in most species, arguing for the existence of D1-subtype, whereas in some others (lower vertebrates and rats), a negative coupling (D2-subtype) has been also detected in peculiar pharmacological conditions implying various combinations of dopamine or a D2-agonist with a D1-antagonist or a D2-antagonist in the absence or presence of forskolin. 4. A subpopulation of autoreceptors of D2-subtype (probably not coupled to adenylate cyclase) also seems to be involved in the modulation of retinal dopamine synthesis and/or release. 5. Light/darkness conditions can affect the sensitivity of retinal dopamine D1 and/or D2-receptors, as studied in binding or pharmacological experiments (cAMP levels, dopamine synthesis, metabolism and release). 6. Visual function(s) of retinal dopamine receptors were connected with the regulation of electrical activity and communication (through gap junctions) between horizontal cells mediated by D1 and D2 receptor stimulation. Movements of photoreceptor cells and migration of melanin granules in retinal pigment epithelial cells as well as synthesis of melatonin in photoreceptors were on the other hand mediated by the stimulation of D2-receptors. 7. Other physiological functions of dopamine D1-receptors respectively in rabbit and in embryonic avian retina would imply the modulation of acetylcholine release and the inhibition of neuronal growth cones.  相似文献   

18.
Electrophysiological organization of the eye of Aplysia   总被引:2,自引:1,他引:1       下载免费PDF全文
The eye of Aplysia californica was studied by electrophysiological and histological methods. It has a central spheroidal lens which is surrounded by a retina composed of several thousand receptor cells which are replete with clear vesicles, pigmented support cells, neurons which contain secretory granules, and glial cells. The thin optic nerve that connects the eye to the cerebral ganglion gives a simple "on" response of synchronized action potentials. Tonic activity occurs in the optic nerve in the dark and is dependent on previous dark adaptation. Micropipette recordings indicate that the ERG is positive (relative to a bathelectrode) on the outer surface of the eye and negative in the region of the distal segments of the receptors. Intracellular recordings show that receptor cells have resting potentials of 40–50 mv and respond to illumination with graded potentials of up to 55 mv. Dark-adapted receptors exhibit discrete bumps on the graded response to brief light flashes. Other elements in the retina that do not give large graded responses fall into two classes. One class responds to illumination with action potentials that are in synchrony with the extracellularly recorded compound optic nerve potentials. The other class is tonically active and is depolarized or hyperpolarized and inhibited upon illumination. It is apparent that complex excitatory and lateral inhibitory interactions occur among the elements of the retina.  相似文献   

19.
A superfusion technique was employed to study the release of [3H]dopamine from isolated bovine retina. Only K+-stimulated release was observed from both light- and dark-adapted retina; release by other stimuli was from dark-adapted retina only. Light-evoked release of [3H]dopamine from dark-adapted retina was blocked by thyrotropin-releasing hormone (TRH), which has previously been identified as a retinal neuropeptide. TRH itself released small amounts of [3H]dopamine from dark-adapted retina. These results are interpreted as indicating that TRH acts as a modulator of dopaminergic activity in retina through the agency of presynaptic autoreceptors. Evidence of the existence of a feedback inhibition system, probably mediated by dopaminergic autoreceptors, was found by the inclusion of sulpiride, a dopaminergic D2 receptor antagonist in the perfusate, which, in a stereoselective manner, enhanced spontaneous and light-evoked release of [3H]dopamine. On the other hand, dopamine (1 microM) reduced these effects. TRH did not affect the high-affinity uptake system for dopamine in retina; this, then, could not account for the effects on release. Radioligand binding showed a specific, saturable high-affinity binding system for [3H]TRH, with an apparent KD of 2.2 nM and a Bmax of 23 fmol/mg protein in bovine retinal membranes. Displacement experiments showed that specific [3H]TRH binding was displaced in the nanomolar range by spiperone and in the micromolar range by dopamine, whereas L-(--)-sulpiride was virtually inactive in displacing [3H]TRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号