首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cows may provide insights into mammary development that are not easily obtained using mouse models. Mammary growth in control and estrogen-treated calves was investigated to evaluate general patterns of proliferation and relationship to estrogen receptor (ER) expression. After in vivo labeling with bromodeoxyuridine (BrdU), serial histological sections of mammary tissue were used to generate three-dimensional reconstructions. BrdU-labeled cells were present throughout the highly branched terminal ducts. ER and progesterone receptors (PR) were colocalized in nuclei of ductal epithelial cells. However, basal cells and epithelial cells that were located in the central region of epithelial cords and those that lined the lumen of patent ducts were ER- and PR-negative, as were stromal cells. Cells along the basal portion of the epithelium were not myoepithelial. ER in mammary epithelial cells but not stromal cells is analogous to patterns in human breast but contrasts with localization in murine mammary gland. After estrogen stimulation, 99% of BrdU-labeled (and Ki67-labeled) epithelial cells were ER-negative. Data suggest that proliferation in response to estrogen treatment was initiated within ER-positive epithelial cells of the developing mammary gland and the signal was propagated in paracrine fashion to stromal elements and ER-negative epithelial cells.  相似文献   

3.
In order to clarify the distribution and content of estrogen (ER) and progesteron receptors (PR) under changing hormonal influences within the various cell populations of the uterus (glandular and luminal endometrial epithelium, stroma, myometrium), immunohistochemical determinations using specific monoclonal antibodies were made. To correlate the immunohistochemical findings with peripheral hormone levels and specific tasks of the endometrium, 17 beta-estradiol and progesterone serum levels were measured and cell proliferation determined by use of BrdU-labelling-immunohistochemistry. At the subcellular level ER and PR were located exclusively in the cell nuclei of female rabbits, which were either immature and lacking any peripheral hormone levels or were pseudopregnant (d0-d8 p.hCG). In the immature rabbits a general faint ER and PR immunostaining was found. In addition to a general increase in ER and PR in all cell populations estrous rabbits (d0 p.hCG) showed a significant rise of ER in the epithelial cells and of PR in the myometrium. Within the epithelial cells and the myometrium the ER dropped heavily within a few days of pseudopregnancy. The PR, however, increased sharply during the first two days of pseudopregnancy and decreased gradually following d4 p.hCG. A close relationship was observed between the high PR content and the proliferation rate of the epithelial cells on d2 p.hCG. In spite of the more rapid decrease of ER compared with PR, the glandular epithelium retained positive immunostaining. In the stroma the ER and especially PR content did not change significantly during the course of pseudopregnancy suggesting that some of the well-known differentiation events in the luminal epithelium may be mediated by the stroma.  相似文献   

4.
Environmental estrogens (xenoestrogens) are chemicals that bind to estrogen receptor, mimic estrogenic actions, and may have adverse effects on both human and wildlife health. Bisphenol A (BPA), a monomer used in the manufacture of epoxy resins and polycarbonate has estrogenic activity. In male rodents prenatal exposure to BPA resulted in modifications at the genital tract level. Our objective was to examine the effects of in utero exposure to low, environmentally relevant levels, of the xenoestrogen BPA on proliferation and differentiation of epithelial and stromal cells on the prepubertal rat ventral prostate. To characterize the periductal stromal cells phenotype the expression of vimentin and smooth muscle alpha-actin was evaluated. Androgen receptor (AR) and prostatic acid phosphatase (PAP) expression were also evaluated in epithelial and stromal compartments. Prenatal exposure to BPA increases the fibroblastic:smooth muscle cells ratio and decreases the number of AR-positive cells of periductal stroma of the ventral prostate. In contrast, no differences in AR expression were observed in epithelial cells between control and BPA-treated groups. No changes in proliferation patterns were observed in epithelial and stromal compartments; however, the expression of PAP was diminished in prostate ductal secretory cells of rats in utero exposed to BPA. Our results suggest that prenatal exposure to BPA altered the differentiation pattern of periductal stromal cells of the ventral prostate. These findings are significant in light of the data on human prostate cancers where alterations in the stroma compartment may enhance the invasive and/or malignant potential of the nascent tumor.  相似文献   

5.
Summary In order to clarify the distribution and content of estrogen (ER) and progesteron receptors (PR) under changing hormonal influences within the various cell populations of the uterus (glandular and luminal endometrial epithelium, stroma, myometrium), immunohistochemical determinations using specific monoclonal antibodies were made. To correlate the immunohistochemical findings with peripheral hormone levels and specific tasks of the endometrium, 17-estradiol and progesterone serum levels were measured and cell proliferation determined by use of BrdU-labelling-immunohistochemistry. At the subcellular level ER and PR were located exclusively in the cell nuclei of female rabbits, which were either immature and lacking any peripheral hormone levels or were pseudopregnant (d0–d8 p.hCG). In the immature rabbits a general faint ER and PR immunostaining was found. In addition to a general increase in ER and PR in all cell populations estrous rabbits (d0 p.hCG) showed a significant rise of ER in the epithelial cells and of PR in the myometrium. Within the epithelial cells and the myometrium the ER dropped heavily within a few days of pseudopregnancy. The PR, however, increased sharply during the first two days of pseudopregnancy and decreased gradually following d4 p.hCG. A close relationship was observed between the high PR content and the proliferation rate of the epithelial cells on d2 p.hCG. In spite of the more rapid decrease of ER compared with PR, the glandular epithelium retained positive immunostaining. In the stroma the ER and especially PR content did not change significantly during the course of pseudopregnancy suggesting that some of the well-known differentiation events in the luminal epithelium may be mediated by the stroma.  相似文献   

6.
We have suggested that in the nonhuman primate endometrium, stromal cells might play a role in mediating the effects of estrogen on the epithelium, especially during the luteal-follicular transition (LFT) when target cells normally escape from the inhibitory influence of progesterone (P). We now report that like estrogen receptors (ER), endometrial progestin receptors (PR) are detectable only in stromal cells until the fifth day of the LFT. With a technique that combined immunocytochemistry and autoradiography on the same sections, we characterized the cellular distribution of ER or PR coincidentally with the localization of [3H]thymidine taken up in vitro by endometria from monkeys undergoing an LFT. DNA synthesis in the glands of the upper endometrium was E2-dependent, but the distribution of [3H]thymidine was not positively correlated with the presence of ER or PR. Readministration of P to animals on days 3 or 4 of the LFT significantly reduced the [3H]thymidine labeling index of the glandular epithelium and caused stromal ER to decline, but P did not block the eventual appearance of ER in epithelial cells on day 5 of the LFT. Thus, E2 stimulated DNA synthesis in epithelial cells that lacked ER, and P suppressed DNA synthesis in these cells even though PR was only detected in the stroma when P treatment began. These data are consistent with a role for endometrial stromal cells in mediating the effects of E2 and P on the epithelium during the LFT.  相似文献   

7.
The endometrial stroma plays a decisive role in sustaining the gland epithelium along the menstrual cycle, and in preparing the microenvironment that allows embryo implantation. The stroma undergoes important changes during the menstrual cycle that affects both the cell number and differentiation. These changes are regulated by both estrogen and progesterone.

Stromal sarcomas are extremely rare, occuring much less than any other uterine tumor. Their origin and biology are poorly understood. The purpose of this work was to try to learn more about the stromal physiology, and also to ascertain whether the stromal sarcoma has characteristics of hormone dependence. We studied the presence of estrogen receptors (ER), progesterone receptors (PR) and the stress-responsive protein of 27K (srp27, a protein first described as an estrogen-induced 24K protein in MCF-7 cells) in both normal stroma and stromal sarcoma. The ER and PR were measured by exchange assays. The srp 27 was studied both by Western-blot and by IHC by means of specific monoclonal antibodies.

The stromal sarcomas studied showed a high concentration of both ER (96 to 116 fmol/mg prot.) and PR (565 to 995 fmol/mg prot.). These amounts of ER and PR were higher than the mean found in normal endometrium during the proliferative phase (43 and 637 fmol/mg prot., respectively), and much higher than that of the secretory phase (17 and 229 fmol/mg prot., respectively). The srp27 characterized by Western-blot in both the normal stroma and stromal sarcoma was found to be similar to the srp27 of breast cancer. The IHC results showed a very low expression of srp27 in the stroma during the proliferative phase that increases when the endometrium enters the secretory phase. The low-malignancy grade stromal sarcomas showed abundant expression of srp27, but the high-malignancy grade sarcomas showed no expression of srp27.

The obtained results prove the stroma capability to express the srp27. A negative correlation between malignancy of stromal tumors and srp27 expression was found. The presence of ER and PR in some stromal sarcomas proves that they have characteristics of hormone responsiveness. These findings suggest that ER and PR assays should be routinely performed in stromal sarcomas as well as in endometrial adenocarcinomas, and also that antiestrogenic drugs might be considered for the treatment of ER and PR positive stromal sarcomas.  相似文献   


8.
Regulation of progesterone receptor (PR) in uterine stroma (endometrial stroma plus myometrium) by estrogen was investigated in estrogen receptor-alpha (ERalpha) knockout (alphaERKO) mice. 17 beta-Estradiol (E(2)) increased PR levels in uterine stroma of ovariectomized alphaERKO mice, and ICI 182 780 (ICI) inhibited this E(2)-induced PR expression. Estrogen receptor-beta(ER beta) was detected in both uterine epithelium and stroma of wild-type and alphaERKO mice by immunohistochemistry. In organ cultures of alphaERKO uterus, both E(2) and diethylstilbestrol induced stromal PR, and ICI inhibited this induction. These findings suggest that estrogen induces stromal PR via ERbeta in alphaERKO uterus. However, this process is not mediated exclusively by ERbeta+, because in ERbeta knockout mice, which express ERalpha, PR was up-regulated by E(2) in uterine stroma. In both wild-type and alphaERKO mice, progesterone and mechanical traumatization were essential and sufficient to induce decidual cells, even though E(2) and ERalpha were also required for increase in uterine weight. Progesterone receptor was strongly expressed in decidual cells in alphaERKO mice, and ICI did not inhibit decidualization or PR expression. This study suggests that up-regulation of PR in endometrial stroma is mediated through at least three mechanisms: 1) classical estrogen signaling through ERalpha, 2) estrogen signaling through ERbeta, and 3) as a result of mechanical stimulation plus progesterone, which induces stromal cells to differentiate into decidual cells. Each of these pathways can function independently of the others.  相似文献   

9.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

10.
The appearance, epithelial and stromal cell distribution of estrogen receptors (ER) in normal mouse mammary gland were determined between 1 and 10 weeks of age using immunohistochemistry. The effect of ovariectomy and estrogen (E)-treatment on the distribution and concentration of ER-positive cells at various ages was also analyzed. These studies demonstrate that ER are present in both mammary epithelial and stromal cells before the mammary gland exhibits a proliferative response or increase in progesterone receptor concentration as a result of E-treatment. Furthermore, an analysis of E-treatment suggests that although ER are present at an early age, there may be additional factors that determine the nature and extent of E-responsiveness.  相似文献   

11.
The expression of estrogen (ER) and progesterone receptors (PR) in the endometrium is regulated by steroid hormones. An increase in plasma estrogen leads to upregulation of the number of both steroid receptors, whereas a decrease in both receptors population is due to high concentration of plasma progesterone. To study the exact effect of different concentrations of beta-estradiol and progesterone on canine epithelial and stromal endometrial cells an in vitro model from dog uterus was developed and kept for 20 days. Material was obtained from healthy dogs, undergoing ovariohysterectomy. Endometrial epithelial and stromal cells were gained after collagenase treatment, followed by filtration steps. Electron microscopy and immunolabeling were used to study cell morphology and differentiation. Immunocytochemistry was used to determine proliferation rate (Ki-67), ER and PR status on Days 3, 8, 10, 13, and 20. Mitotic activity of both cells was stimulated with different concentrations of steroids and revealed high values until cells reached confluency. ER and PR expression in confluent layer from epithelial and stromal cells was upregulated with beta-estradiol. In addition progesterone significant downregulated both receptors population in stromal cells, whereas the reduction was less pronounced in epithelial cells. Results showed that our in vitro system is a useful tool to study the influence of beta-estradiol and progesterone on cell proliferation rate, ER and PR expression. The primary cell culture model helps to avoid experiments on living animals.  相似文献   

12.
The purpose of this study was to determine the distribution of estrogen receptors (ER) and progestin receptors (PR) in specific uterine cell populations during various steroid hormone treatment regimens, and to determine if ER and PR distribution in the uterus is altered during implantation and the establishment of pregnancy in the cat. The tissues were processed for indirect immunocytochemical localization of receptors using specific monoclonal antibodies against ER and PR. ER were present in the nuclei of all epithelial cells and stromal fibroblasts in endometrium obtained from ovariectomized animals, whereas PR were only detectable in the nuclei of stromal fibroblasts. There was an apparent increase in the staining intensity and number of nuclei that stained positively for both ER and PR in all cell populations after 14 days of estradiol treatment. The administration of progesterone for 14 and 21 days, in the presence or absence of continuous estradiol, reduced the apparent intensity of staining and the number of nuclei staining positively for both ER and PR. ER were undetectable in the luminal epithelium, but remained in the glandular epithelial cells and stromal fibroblasts, whereas PR were only detectable in stromal fibroblasts. ER and PR localization in the endometrium obtained from estrus animals was similar to that observed in the estradiol-treated animals. A general decrease in intensity of staining for both ER and PR was evident by Day 5 postcoitus in pregnant animals. This decrease in intensity of staining continued until Day 12 postcoitus, when the distributions of ER and PR were similar to those observed in the ovariectomized estradiol-primed, progesterone-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Prostatic development is induced by androgens acting via mesenchymal-epithelial interactions. Androgens elicit their morphogenetic effects by acting through androgen receptors (ARs) in urogenital sinus mesenchyme (UGM), which induces prostatic epithelial development. In adulthood reciprocal homeostatic stromal-epithelial interactions maintain functional differentiation and growth-quiescence. Testosterone plus estradiol (T+E2) have been shown to induce prostatic carcinogenesis in animal models. Thus, tissue recombinant studies were undertaken to explore the mechanisms of prostatic carcinogenesis in BPH-1 cells in which ARs and estrogen receptors (ERs) are undetectable. For this purpose, BPH-1 cells were combined with UGM, and the UGM+BPH-1 recombinants were grafted to adult male hosts. Solid branched epithelial cords and ductal structures formed in untreated UGM+BPH-1 recombinants. Growth was modest, and tumors did not develop. UGM+BPH-1 recombinants treated with T+E2 formed invasive carcinomas. BPH-1 cells lack ARs and ERs, whereas rat UGM expresses both of these receptors. These data show that immortalized nontumorigenic human prostatic epithelial cells can undergo hormonal carcinogenesis in response to T+E2 stimulation via paracrine mechanisms and demonstrate that the stromal environment plays an important role in mediating hormonal carcinogenesis. During prostatic carcinogenesis the stroma undergoes progressive loss of smooth muscle with the appearance of carcinoma-associated fibroblasts (CAF). This altered stroma was tested for its ability to promote carcinogenesis of nontumorigenic but immortalized human prostatic epithelial cells (BPH-1). CAF+BPH-1 tissue recombinants formed large carcinomas. In contrast, recombinants composed of normal prostatic stroma+BPH-1 cells exhibited minimal growth. This stroma-induced malignant transformation was associated with additional genetic alterations and changes in gene expression. Thus, alteration in the stromal microenvironment was sufficient to promote malignant transformation of human prostatic epithelial cells.  相似文献   

14.
Cells of the female reproductive tract are subject to hormonal control via sex steroid genomic receptors expressed at nuclear level. We previously showed that interstitial Cajal-like cells (ICLC) of human myometrium expressed estrogen and progesterone receptors (ER/PR). Our aim, based on these results, was to see if ER and/or PR could be found also in tubal ICLC. Indeed, we present here immunohistochemical evidence that ICLC of human Fallopian tube (isthmic region) have such receptors. Stromal ICLC, as well as ICLC among smooth muscle layers, were identified in tissue sections by their morphological features (e.g. several very long, moniliform, prolongations of cell body) as well as by c-kit positivity, vital staining with methylene blue or silver impregnation. Additional evidence was provided by sequential staining for c-kit and for PR on the same cell, by ‘sandwich method’. In vitro, the 4th passage cell cultures from Fallopian tube muscularis exhibiting ICLC morphology showed the presence of ER-alpha and/or PR-A by immunofluorescence. In conclusion, our data suggest that ICLC could function as steroid sensors, and might be implicated in Fallopian tube motility (via gap junctions or juxta- and/or paracrine mechanisms).  相似文献   

15.
In the present study, changes in the immunohistochemical localization of endometrial estrogen receptor (ER) and progesterone receptor (PR) during various stages of the ovarian cyclicity in common marmoset, have been reported. Ovarian cyclicity was monitored by estimating plasma estradiol and progesterone. During the early follicular phase, weak ER immunolocalization was observed in the endometrial stroma. During the late follicular phase under the influence of rising estradiol levels, stromal ER localization was intense. During the luteal phase, ER localization was absent in the stroma indicating that high concentrations of progesterone suppressed ER. PR localization was not observed in the stroma during the early follicular phase, while weak staining was seen in the stroma during the late follicular phase. PR localization was maximum during the mid luteal phase. However in marmoset, endometrial ER and PR localization was restricted only to the stroma. This unique feature may be due to the characteristic reproductive profile of this nonmenstruating species and needs to be studied further. Thus it can be hypothesized that in the marmoset endometrium, steroid hormone mediated effects possibly occur directly in the stroma and are then transmitted to the epithelium by autocrine/paracrine action of growth factors and cytokines.  相似文献   

16.
The purpose of the present studies was to investigate the role of epidermal growth factor (EGF) in the acquisition of estrogen (E) and progestin (P) responsiveness in the mouse mammary gland in vivo. Using the Elvax 40P implant technique to introduce bioactive molecules directly into the mammary gland to produce a localized effect, we have made the novel observation that EGF implanted into glands of pubertal mice followed by E treatment resulted in the precocious acquisition of E-inducible progesterone receptors (PR). In sexually mature mice, EGF implants alone were able to increase PR. A neutralizing antibody specific for EGF blocked E-dependent stimulation of end-bud development and PR induction. Furthermore, the antiestrogen ICI 182,780 blocked the EGF-induced stimulation end-buds and PR induction, indicating that these EGF effects are mediated via estrogen receptors (ER). Immunohistochemical analysis showed that the endogenous EGF content of mammary glands of mature mice was higher than pubertal mice, that E implants caused a localized increase in mammary gland EGF content in both pubertal and mature mice, and that in mature mice E caused an increase in stromal cell EGF content. We have previously shown that the acquisition of E-inducible PR can be modulated by mammary stroma, and the present results indicate that mammary stroma could modulate hormonal responsiveness through control of local growth factor concentration. Taken together, these results provide evidence that E-dependent responses of mouse mammary gland in vivo, such as end-bud proliferation and PR regulation, may be mediated by EGF through an ER-dependent mechanism. J. Cell. Physiol. 174:251–260, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The aim of this study was to characterize the stromal and epithelial distribution of AR, ERα and ERβ reactivities in the different accessory sex glands of elderly rats and during strong hormonal changes. Ten month old male rats were divided into six senile groups and submitted to treatment: Senile/Control group (SC); Senile/Testosterone group (ST): Senile/Estrogen group (SE); Castrated group (CA); Castrated/Testosterone group (CT); Castrated/Estrogen group (CE). After a 30-day treatment, the prostatic ventral lobe (VL), dorsal lobe (DL) and coagulating gland (CG) samples were processed for immunohistochemistry and Western Blotting. The results showed that AR immunoreactivity was characterized in the epithelium of VL and DL in senile/control rats and senile rats submitted to exogenous hormonal therapy. AR reactivity in the coagulating gland was verified predominantly in the stromal cells in the different experimental groups. ERα reactivity occurred predominantly in the stromal compartment in all accessory sex glands. In the DL and CG, ERα immunoreactivities were intense in the groups which received testosterone (ST) and estrogen (SE). ERβ immunoreactivity in the CG was verified in the stromal compartment in the different experimental groups, showing a positive response to both increased testosterone and estrogen levels. ERβ reactivity, in the DL, was intensified in the stroma of senile rats with higher serum testosterone levels, and in senile rats with increased serum estrogen levels, especially in the glandular epithelium. Thus, the results revealed different distribution pattern of steroid hormone receptors in each one of the prostatic lobes in senescence, especially in the prostate dorsal lobe and coagulating gland, which is a fundamental factor due to the fact that major prostatic diseases occur in a later period of life.  相似文献   

18.
19.
Sex steroid sensitivity of the bursa of Fabricius (BF) was studied from the early embryonic time until its regression. Expression of progesterone receptor (PR) served as a dual marker: first, as a marker for progesterone sensitivity and second, as a marker for estrogen action, since it is an estrogen-induced protein. The progesterone binding molecule in the bursa was characterized by different chromatography methods and by steroid binding studies. We showed that it fulfils the criteria of a progesterone receptor by binding, structural and immunological properties. With immunohistochemistry and with the combined techniques of immunohistochemistry and autoradiography we demonstrated two cell types which express the PR: smooth muscle cells surrounding the BF and stromal cells located under the bursal epithelium and between the lymphoid follicles. The epithelium and the cells inside the lymphoid follicles were negative. Using immunoelectron microscopy the PR-expressing stromal cells were shown to be fibroblasts. The cloacal mesenchyme, from which the BF develops, was shown to be sensitive to exogenous estrogen very early during the embryonic time. The mesenchyme around and inside the developing BF reached estrogen sensitivity a few days later. The estrogen-sensitive mesenchymal cells were first seen surrounding the bursal primordium and later in the center of the plicae. During a natural sexual maturation without exogenous estradiol an expression of the PR was detected much later, at the age of 10-12 weeks after hatching. This expression correlates with the onset of the bursal regression and with the increase of the sex steroid levels in the blood. In the oviduct stroma PR was undetectable before the onset of sexual maturation. In the oviduct stroma PR becomes detectable a few weeks earlier than in the bursa.  相似文献   

20.
The aim of this immunohistochemical study is to describe the normal distribution of progesterone receptors in the various cell types of the canine uterine horns, body and cervix. The results can be used for research on uterine and endocrinological pathology, since the impact of progesterone on different uterine cell types is partly determined by the receptor availability. Nuclear staining for progesterone receptors was observed in epithelial cells of the surface epithelium, glandular ducts and basal glands of the endometrium, in endometrial stroma cells and in myometrial smooth muscle cells. This staining was positively correlated with the estradiol-17 beta:progesterone ratio, and reflects the positive effect of estradiol-17 beta and the negative influence of progesterone on the receptors. Staining scores were high during proestrus and decreased through estrus to early metestrus. In late metestrus, staining scores of the stromal and smooth muscle cells increased again. In anestrus, high scores of the surface-epithelial cells contrasted with minimal scores of the basal glands. This finding suggests a different hormonal regulation of the progesterone receptor expression in both epithelial cell groups. The higher staining intensities for progesterone receptors in stromal cells compared with epithelial cells might be explained by the fact that stromal cells mediate some effects of steroid hormones on the epithelial cells in the genital tract. Therefore, the role of stromal cells in regulation of the cyclic endometrial changes and in pathologic changes of uterine tissue should not be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号