首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
载脂蛋白B mRNA编辑催化多肽样(apolipoprotein B mRNA-editing catalytic polypeptide-like,APOBEC)蛋白是一组胞嘧啶脱氨基酶,具有天然的抗病毒活性,对多种病毒具有抑制作用,特别是逆转录病毒. APOBEC3蛋白能够抑制人类免疫缺陷病毒(HIV-1)的感染,其中APOBEC3G和APOBEC3F的作用最强. APOBEC3G能够通过胞嘧啶脱氨基作用和非胞嘧啶脱氨基作用抑制病毒感染. HIV-1病毒感染因子(Vif) 蛋白主要经泛素-蛋白酶体途径介导APOBEC3G降解,从而拮抗其抗病毒作用. APOBEC3G和Vif之间相互作用的研究对于寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

2.
激光扫描共聚焦显微镜(LSCM)是当今世界上最先进的分子细胞生物学分析仪器之一。旨就LSCM在细胞间隙连接蛋白的定位、定量、分布及细胞间分子迁移、胞间通讯等方面的应用进行综述,并对其在GJIC的研究进行展望。  相似文献   

3.
激光扫描共聚焦显微镜是以单个的、活性的、贴壁的细胞标本为主要的研究对象。为了获得适合共聚焦显微镜分析的组织细胞标本,本文讨论了标本制备存在的一些问题并提出了改进的方法。结果显示:组织细胞外环境中盐溶液、pH值、温度、氧气等均为影响细胞活性的重要因素;而且细胞的贴壁效果也是观测分析的关键条件之一。本文对激光扫描共聚焦显微镜术中的组织细胞学方法进行了探讨,并为此提供一些有实效的实验方法。  相似文献   

4.
目的:利用慢病毒载体建立稳定表达猪载脂蛋白B mRNA编辑酶催化多肽样蛋白3F(pAPOBEC3F,简称pA3F)的PK15细胞系。方法:以实验室前期构建的pBPLV-flag-pA3F质粒为模板,PCR扩增pA3F基因,克隆到pLenti-Puro-3Flag载体构建成pLenti-Puro-pA3F-3Flag质粒,Western印迹鉴定其在HEK293T细胞中的表达;将pLenti-Puro-pA3F-3Flag质粒与包装载体共转染HEK293T细胞,包装成Lenti-pA3F慢病毒并测定病毒滴度;将Lenti-pA3F慢病毒感染PK15细胞,通过嘌呤霉素压力筛选并结合有限稀释法,筛选稳定表达pA3F的细胞单克隆株,最终Western印迹检测细胞单克隆株中pA3F的表达。结果:菌落PCR和序列测定表明pLenti-Puro-pA3F-3Flag质粒构建正确,Western印迹显示该质粒可在HEK293T细胞中表达pA3F蛋白;包装了Lenti-pA3F慢病毒,滴度为1.32×10~8TU/mL,慢病毒感染PK15细胞后可检测到pA3F蛋白的表达;经Western印迹鉴定,筛选得到的单克隆细胞可稳定表达pA3F蛋白。结论:建立了稳定表达pA3F的PK15细胞单克隆株,为进一步深入研究猪内源性反转录病毒在pA3F作用下的免疫逃逸机制奠定了基础。  相似文献   

5.
激光扫描共聚焦显微镜荧光探针的选择和应用   总被引:8,自引:1,他引:7  
激光扫描共聚焦显微镜是检测生物荧光信号的最新技术手段。不仅广泛用于荧光定性、定量测量,还可用于活细胞动态荧光监测、组织细胞断层扫描、三维图象重建、共聚焦图象分析、荧光光漂白恢复、激光显微切割手术等。本文拟就激光扫描共聚焦显微镜常用的检测内容及其相关荧光探针的选择和应用做一简单的介绍。  相似文献   

6.
目的:利用反转录病毒载体构建猪载脂蛋白B mRNA编辑酶催化多肽样蛋白(APOBEC)3F重组质粒,并实现其在猪肾细胞PK15中的表达。方法:用RT-PCR方法扩增五指山猪来源的外周血淋巴细胞APOBEC3F基因,将其定点插入反转录病毒载体pMSCV neo中,同时于插入位点两侧分别添加FLAG和GFP标签,构建重组质粒pMSCV-FLAG-A3F-GFP,并进行酶切、测序鉴定;将鉴定正确的重组质粒与pVSV-G、pGag-Pol共转染包装细胞HEK293T,分别于转染后48~72 h收集细胞的培养上清以获得假型病毒粒子;用该假型病毒感染猪源细胞PK15,通过PCR、Western印迹检测目的基因的整合及表达。结果:PCR扩增到1254 bp的猪APOBEC3F基因,重组质粒pMSCV-FLAG-A3F-GFP经酶切、测序,结果无误;3质粒共转染HEK293T细胞包装出的假型病毒感染PK15细胞后观察到GFP表达;从感染假型病毒的PK15细胞基因组中扩增到1254 bp的猪APOBEC3F基因,Western印迹检测到78.1×103的猪APOBEC3F蛋白的表达。结论:实现了反转录病毒载体介导的猪APOBEC3F在猪源细胞PK15中的整合与表达,为深入研究该分子对猪内源性反转录病毒(PERV)的抑制作用奠定了基础。  相似文献   

7.
激光扫描共聚焦显微镜在孢粉研究中的应用   总被引:1,自引:0,他引:1  
在MRC1000型激光扫描共聚焦显微镜下,观察具有自发荧光的孢子、花粉、沟鞭藻以及疑源类等不同时代的化石标本,发现现代和第四纪孢粉具有较强的自发荧光,古生代的孢子自发荧光强度最弱。后者很难聚焦成清晰的二维投影图像。在观察孢粉样品过程中,选择合适的激光波长及激光扫描强度是关键的技术问题。一般以氪、氩离子激发为效果最佳,以波长488,568,647nm最合适。  相似文献   

8.
通过激光扫描共聚焦显微镜,利用不同种类(波长)的激光研究拟南芥叶片气孔发生与发育。结果表明,利用紫外激光(351nm)扫描可以清楚观察到拟南芥表皮各种细胞及其发生发育的形态变化,包括表皮毛细胞、副卫细胞、保卫细胞、铺垫表皮细胞等。气孔发生过程中,首先原表皮细胞不对称分裂产生拟分生组织和副卫细胞,接着分化出保卫细胞母细胞,进一步发育形成保卫细胞,最终形成气孔器。气孔分化完成后,保卫细胞在紫外激光下不产生荧光,但利用蓝光激发(488nm)辅助荧光素染色,可清晰地看到保卫细胞。结果表明,激光扫描共聚焦显微镜在拟南芥叶表皮细胞形态研究上有独特的功能。  相似文献   

9.
传统的观察血管的方法需将组织制成切片,然后通过光学显微镜进行观察。显示的只是血管的某一片段而无法观察到血管的全貌。应用激光扫描共聚焦显微镜,可对活体动物血管进行断层成像,从而再现血管的结构。本方法为对肿瘤等病变组织血管进行研究提供了一种新的检测手段。  相似文献   

10.
激光扫描共聚焦显微镜与普通光学显微镜相比,其分辨率高,同时具有可对样品进行非侵入性无损伤断层扫描,以及对样品形貌进行三维成建等特点,因此,可作为研究晶体生长强有利的工具。本文介绍了其在定量测量晶体的个数,重组三维图像以获得晶体生长的过程信息及测定晶体生长台阶动态变化等方面的应用。还对激光扫描共聚焦显微镜在晶体生长研究的其它方面应用前景作了展望。  相似文献   

11.
He Z  Zhang W  Chen G  Xu R  Yu XF 《Journal of molecular biology》2008,381(4):1000-1011
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus (HIV)-1 requires suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5, ElonginB, and ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. Domains in Vif that mediate APOBEC3 recognition have not been fully characterized. In the present study, we identified a VxIPLx4-5LxΦx2YWxL motif in HIV-1 Vif, which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion, and functional suppression of the A3G antiviral activity. Amino acids 52 to 72 of HIV-1 Vif (including the VxIPLx4-5LxΦx2YWxL motif) alone could mediate interaction with A3G, and this interaction was abolished by mutations of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G, yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G, suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44, which is only important for A3G suppression, the VxIPLx4-5LxΦx2YWxL motif is also required for efficient A3F interaction and suppression. On the other hand, another motif, TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition. Both the VxIPLx4-5LxΦx2YWxL and TGERxW motifs are highly conserved among HIV-1, HIV-2, and various simian immunodeficiency virus Vif proteins. Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3 proteins through conserved structural features that represent attractive targets for the development of novel inhibitors.  相似文献   

12.
The APOBEC3 family of cytosine deaminases catalyzes the conversion of cytosines-to-uracils in single-stranded DNA. Traditionally, these enzymes are associated with antiviral immunity and restriction of DNA-based pathogens. However, a role for these enzymes in tumor evolution and metastatic disease has also become evident. The primary APOBEC3 candidate in cancer mutagenesis is APOBEC3B (A3B) for three reasons: (1) A3B mRNA is upregulated in several different cancers, (2) A3B expression and mutational loads correlate with poor clinical outcomes, and (3) A3B is the only family member known to be constitutively nuclear. Previous studies have mapped non-canonical A3B nuclear localization determinants to a single surface-exposed patch within the N-terminal domain (NTD). Here, we show that A3B has an additional, distinct, surface-exposed NTD region that contributes to nuclear localization. Disruption of residues within the first 30 amino acids of A3B (import surface 1) or loop 5/α-helix 3 (import surface 2) completely abolish nuclear localization. These import determinants also graft into NTDs of related family members and mediate re-localization from cell-wide-to-nucleus or cytoplasm-to-nucleus. These findings demonstrate that both sets of residues are required for non-canonical A3B nuclear localization and describe unique surfaces that may serve as novel therapeutic targets.  相似文献   

13.
How host–virus co‐evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal–lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide‐like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti‐viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non‐primate lentiviral Vif being incapable of counteracting a natural host's anti‐viral activity mediated via APOBEC3 protein.  相似文献   

14.
Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.  相似文献   

15.
The effect of host cell factors on infectivity of human immunodeficiency virus type 1 (HIV-1) was studied by infecting a monoblastoid cell line (U937) or a T-cell line (MOLT-4) with a highly infective single clone of HIV-1 and comparing the infectivity of the produced viruses to different cell lines. Chronically infected U937 cells consistently produced viruses with minimal infectivity. This phenotypic change was host-dependent as the back-passage of the U937-produced low infective viruses into MOLT-4 cells resulted in regaining their original high infectivity. Southern and Northern blot analyses of the HIV-1 grown in U937 cells did not reveal any genomic difference between it and the virus grown it MOLT-4 cells. The radioimmunoprecipitation analysis of viral proteins showed that the HIV-1-infected U937 cells had a different pattern of envelope glycoproteins and core proteins, which well correlated with the low infectivity of the produced viruses. This experimental system using MOLT-4 and U937 cell lines would be useful to further explore host cell factor(s) which play an important role in the regulation of HIV-1 infectivity.  相似文献   

16.
17.
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60–90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation.  相似文献   

18.
To prepare HIV-1 Vif and hAPOBEC3G and to produce their antibodies, the full length gene fragment of HIV-1 Vif was amplified by PCR from a plasmid of HIV-1 NL4.3 cDNA, and the APOBEC3G gene was obtained by RT-PCR from the total RNA of H9 cells. The resulting DNA construct was cloned into a prokaryotic expression vector (pET-32a). Recombinant pET-vif and pET-APOBEC3G were expressed respectively in Eserichia coli BL21 (DE3) as an insoluble protein. The vector also contained a six-histidine tag at the C-terminus for convenient purification and detection. To express and purify the HIV-1 Vif and hAPOBEC3G in E. coli cells, the accuracy of inserted gene and specificity of proteins were detected by the two enzyme digestion method, SDS-PAGE, and Western blotting. Rabbits were then immunized by Vif or APOBEC3G protein and serum samples were tested by indirect ELISA to determine the level of antibodies. Immunoenzyme and immunofluorescence assays were performed to identify the specificity of polyclonal antibodies. The titer of the anti-Vif antibodies was 1:204800, and that of the anti-APOBEC3G antibodies was 1:102400. Thus the antibodies could detect the antigen expression in the cells, demonstrating that fusion proteins with high purity and their corresponding polyclonal antibodies with high titer and specificity were achieved.  相似文献   

19.
To prepare HIV-1 Vif and hAPOBEC3G and to produce their antibodies, the full length gene fragment of HIV-1 Vif was amplified by PCR from a plasmid of HIV-1 NL4.3 cDNA, and the APOBEC3G gene was obtained by RT-PCR from the total RNA of H9 cells. The resulting DNA construct was cloned into a prokaryotic expression vector (pET-32a). Recombinant pET-vif and pET-APOBEC3G were expressed respectively in Eserichia coli BL21 (DE3) as an insoluble protein. The vector also contained a six-histidine tag at the C-terminus for convenient purification and detection. To express and purify the HIV-1 Vif and hAPOBEC3G in E. coli cells, the accuracy of inserted gene and specificity of proteins were detected by the two enzyme digestion method, SDS-PAGE, and Western blotting. Rabbits were then immunized by Vif or APOBEC3G protein and serum samples were tested by indirect ELISA to determine the level of antibodies. Immunoenzyme and immunofluorescence assays were performed to identify the specificity of polyclonal antibodies. The titer of the anti-Vif antibodies was 1204800, and that of the anti-APOBEC3G antibodies was 1102400. Thus the antibodies could detect the antigen expression in the cells, demonstrating that fusion proteins with high purity and their corresponding polyclonal antibodies with high titer and specificity were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号