首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid forming beta-peptide of Alzheimer's disease is synthesized as part of a larger integral membrane precursor protein (beta APP) of which three alternatively spliced versions of 695, 751, and 770 amino acids have been described. A fourth beta APP form of 563 amino acids does not contain the beta-peptide region. Recent experiments using transient expression in HeLa cells (Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J.M., Masters, C.L., and Beyreuther, K. (1989) Cell 57, 115-126) indicate that the beta APP undergoes several posttranslational modifications including the cleavage and secretion of a large portion of its extracellular domain. The nature and fate of the fragment that remains cell-associated following this cleavage has not heretofore been described. The metabolism of this fragment may have particular significance in Alzheimer's disease since it must contain at least part of the beta-peptide. To study the metabolic fate of this fragment, we have established cell lines overexpressing the 695- and 751-amino acid versions of beta APP. Pulse-chase studies show that this system is similar to the HeLa cell system in that both proteins are synthesized first as membrane-bound proteins of approximately 98 and 108 kDa carrying asparagine-linked sugar side chains and are subsequently processed into higher molecular mass forms by the attachment of sulfate, phosphate, and further sugar groups including sialic acid, adding approximately 20 kDa in apparent molecular mass. The mature form of beta APP is cleaved and rapidly secreted, leaving an 11.5-kDa fragment with the transmembrane region and the cytoplasmic domain behind in the cell. This fragment is stable with a half-life of at least 4 h.  相似文献   

2.
A number of studies suggest that early events in the maturation of amyloid precursor protein (APP) are important in determining its entry into one of several alternative processing pathways, one of which leads to the toxic protein beta-amyloid (Abeta). In pulse-labeled APP expressing CHO cells two proteolytic systems can degrade newly translated APP: the proteosome and a cysteine protease. When N-glycosylation was inhibited by tunicamycin, the former system is the dominant mechanism of APP degradation. Without tunicamycin present, the cysteine protease is operational: cysteine protease inhibitors completely inhibit APP turnover in cells in which the secretory pathway is interrupted with brefeldin A or when alpha-secretase and endosomal degradation are also pharmacologically blocked. APP immunoprecipitated from cells extracted under mild conditions and labeled in the presence of tunicamycin exhibited greater sensitivity to endoproteinase glu-C (V8) or lys-C than from cells without drug. The V8 fragment missing in tunicamyin treated cells encompassed the KPI inhibitor insertion site but was distinct from the site of N-glycosylation. It is concluded that a conformational change caused by interrupted N-glycosylation shunts newly translated APP into the proteasomal degradation pathway. Pulse-labeled and chased cells showed an additional V8 fragment that was not present in pulsed-labeled cells and was not due to glycosylation since it was also present in cells labeled in the presence of brefeldin. This latter result indicates that an additional, delayed conformational alteration occurs in the endoplasmic reticulum.  相似文献   

3.
Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates.  相似文献   

4.
5.
Exposure of carcinoma cell lines to the antibiotic geldanamycin induces the degradation of ErbB-2, a co-receptor tyrosine kinase that is frequently overexpressed in certain tumors. Using ErbB-2 mutants expressed as chimeric receptors or green fluorescent protein fusion proteins, we report that the kinase domain of ErbB-2 is essential for geldanamycin-induced degradation. The kinase domain of the related epidermal growth factor receptor was not sensitive to this drug. The data further indicate mechanistic aspects of ErbB-2 degradation by geldanamycin. The data show that exposure to the drug induces at least one cleavage within the cytoplasmic domain of ErbB-2 producing a 135-kDa fragment and a 23-kDa fragment. The latter represents the carboxyl-terminal domain of ErbB-2, whereas the former represents the ectodomain and part of the cytoplasmic domain. Degradation of the carboxyl-terminal fragment is prevented by proteasome inhibitors, whereas degradation of the membrane-anchored 135-kDa ErbB-2 fragment is blocked by inhibitors of the endocytosis-dependent degradation pathway. Confocal microscopy studies confirm a geldanamycin-induced localization of ErbB-2 on intracellular vesicles.  相似文献   

6.
Previously we found that X11-like protein (X11L) associates with amyloid beta-protein precursor (APP). X11L stabilizes APP metabolism and suppresses the secretion of the amyloid beta-protein (Abeta) that are the pathogenic agents of Alzheimer's disease (AD). Here we found that Alcadein (Alc), a novel membrane protein family that contains cadherin motifs and originally reported as calsyntenins, also interacted with X11L. Alc was abundant in the brain and occurred in the same areas of the brain as X11L. X11L could simultaneously associate with APP and Alc, resulting in the formation of a tripartite complex in brain. The tripartite complex stabilized intracellular APP metabolism and enhanced the X11L-mediated suppression of Abeta secretion that is due to the retardation of intracellular APP maturation. X11L and Alc also formed another complex with C99, a carboxyl-terminal fragment of APP cleaved at the beta-site (CTFbeta). The formation of the Alc.X11L.C99 complex inhibited the interaction of C99 with presenilin, which strongly suppressed the gamma-cleavage of C99. In AD patient brains, Alc and APP were particularly colocalized in dystrophic neurites in senile plaques. Deficiencies in the X11L-mediated interaction between Alc and APP and/or CTFbeta enhanced the production of Abeta, which may be related to the development or progression of AD.  相似文献   

7.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

8.
BRL-3A rat liver cells synthesize mature 7484-dalton rat insulin-like growth factor II (rIGF-II) as a approximately 22-kDa precursor, presumably prepro-rIGF-II. In the present study, we have biosynthetically labeled intact BRL-3A cells with [35S]cysteine and immunoprecipitated cell lysates and media with antisera to rIGF-II. A approximately 20-kDa protein was identified in immunoprecipitates of cell lysates having properties consistent with pro-rIGF-II. The approximately 20-kDa protein is precipitated by immune sera but not by nonimmune serum. Its immunoprecipitation is specifically inhibited by unlabeled rIGF-II but not by insulin. It is not precipitated from labeled lysates of a subclone of BRL-3A cells (BRL-3A2) that does not synthesize rIGF-II. The approximately 20-kDa protein is rapidly labeled intracellularly (10 min) but is not detected in BRL-3A media. In pulse-chase experiments, radioactivity in the approximately 20-kDa protein disappears during the chase and appears, at later times, in specifically immunoprecipitated approximately 19-, approximately 10-, approximately 8-, and approximately 7-kDa proteins in media and, to a limited extent, intracellularly. A protein with electrophoretic mobility identical to that of the approximately 20-kDa protein observed in cell lysates is immunoprecipitated from 35S-proteins whose synthesis is directed by BRL-3A RNA in a reticulocyte lysate cell-free translation system supplemented with microsomal membranes, and presumably arises by cotranslational removal of the signal peptide from approximately 22-kDa prepro-rIGF-II. Processing of the approximately 20-kDa protein in intact BRL-3A cells to intermediate and mature rIGF-II species appears to occur at the time of secretion and/or shortly thereafter, with the different forms appearing at approximately the same time.  相似文献   

9.
Amyloid (Abeta) peptides found aggregated into plaques in Alzheimer's disease are derived from the sequential cleavage of the amyloid precursor protein (APP) first by beta- and then by gamma-secretases. Peptide aldehydes, which inhibit cysteine proteases and proteasomes, reportedly block Abeta peptide secretion by interfering with gamma-secretase cleavage. Using a novel, specific, and sensitive enzyme-linked immunosorbent assay for the beta-secretase-cleaved fragment of the Swedish mutant of APP (APPSw), we determined that the peptide aldehyde, MG132, prevented beta-secretase cleavage. This block in beta-secretase cleavage was not observed with clasto-lactacystin beta-lactone and thus, cannot be attributed to proteasomal inhibition. MG132 inhibition of beta-secretase cleavage was compared with the serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF). AEBSF inhibition of beta-secretase cleavage was immediate and did not affect alpha-secretase cleavage. With MG132, inhibition was delayed and it decreased secretion of alpha-cleaved APPSw as well. Furthermore, MG132 treatment impaired maturation of full-length APPSw. Both inhibited intracellular formation of the beta-cleaved product. These results suggest that peptide aldehydes such as MG132 have multiple effects on the maturation and processing of APP. We conclude that the MG132-induced decrease in beta-secretase cleavage of APPSw is due to a block in maturation. This is sufficient to explain the previously reported peptide aldehyde-induced decrease in Abeta peptide secretion.  相似文献   

10.
Monoclonal antibodies (2-3E2, 6-3G11, and 7-3H6) against gap junction plaques purified from rat liver were prepared and characterized. Immunoblot analysis of liver gap junctions revealed that all three antibodies reacted with the 27-kDa protein, but not with the 22-kDa one. The 2-3E2 and 6-3G11 antibodies both reacted with the 27-kDa protein in gap junctions purified from livers of the rat, mouse, rabbit, and guinea pig; the 7-3H6 antibody, however, failed to react with the 27-kDa protein from guinea pig liver. The 7-3H6 antibody reacted strongly with the 24- to 26-kDa degradation products of the 27-kDa protein. Indirect immunofluorescence showed that the 6-3G11 and 7-3H6 antibodies both gave the same specific fluorescence labeling on rat liver cryosections, suggesting that these two antibodies recognized the cytoplasmic sites of the 27-kDa protein. Immunoblot analysis of protease-digested fragments from the 27-kDa protein revealed that the 7-3H6 antibody reacted with the 24- and 17-kDa fragments (including portions of the carboxyl-terminal domain of the 27-kDa protein) produced with endoproteinases Arg-C and Lys-C, respectively. Immunoblot analysis of CNBr fragments of the 27-kDa protein revealed that all three antibodies reacted with the 10-kDa fragment, which is thought to be the carboxyl-terminal domain of the 27-kDa protein. These results demonstrate that three monoclonal antibodies recognize different epitopes of the cytoplasmic sites (probably the carboxyl-terminal domain) of the 27-kDa liver gap junction protein.  相似文献   

11.
The geldanamycin-induced degradation of ErbB-2 produces a 23-kDa carboxyl-terminal fragment, which has been isolated and subjected to amino-terminal microsequencing. The obtained sequence indicates that the amino terminus of this fragment corresponds to Gly-1126 of ErbB-2. Analysis of the residues immediately before Gly-1126 suggests that cleavage may involve caspase activity. Site-directed mutagenesis of Asp-1125 in ErbB-2 prevents geldanamycin-provoked formation of the 23-kDa fragment, consistent with the requirement of this residue for caspase-dependent cleavage in known substrates. Also, the addition of the pan-caspase inhibitor Z-VAD-FMK blocks formation of the 23-kDa ErbB-2 fragment in cells exposed to geldanamycin. Interestingly, staurosporin and curcumin are also shown to provoke the degradation of ErbB-2 with formation of the 23-kDa carboxyl-terminal fragment. The generation of this fragment by staurosporin or curcumin is likewise blocked by caspase inhibition. Caspase inhibition does not prevent accelerated degradation of the 185-kDa native ErbB-2 in geldanamycin-treated cells but does significantly prevent staurosporin-stimulated metabolic loss of ErbB-2.  相似文献   

12.
In one of the most common mutations causing metachromatic leukodystrophy, the P426L-allele of arylsulfatase A (ASA), the deficiency of ASA results from its instability in lysosomes. Inhibition of lysosomal cysteine proteinases protects the P426L-ASA and restores the sulfatide catabolism in fibroblasts of the patients. P426L-ASA, but not wild type ASA, was cleaved by purified cathepsin L at threonine 421 yielding 54- and 9-kDa fragments. X-ray crystallography at 2.5-A resolution showed that cleavage is not due to a difference in the protein fold that would expose the peptide bond following threonine 421 to proteases. Octamerization, which depends on protonation of Glu-424, was impaired for P426L-ASA. The mutation lowers the pH for the octamer/dimer equilibrium by 0.6 pH units from pH 5.8 to 5.2. A second oligomerization mutant (ASA-A464R) was generated that failed to octamerize even at pH 4.8. A464R-ASA was degraded in lysosomes to catalytically active 54-kDa intermediate. In cathepsin L-deficient fibroblasts, degradation of P426L-ASA and A464R-ASA to the 54-kDa fragment was reduced, while further degradation was blocked. This indicates that defective oligomerization of ASA allows degradation of ASA to a catalytically active 54-kDa intermediate by lysosomal cysteine proteinases, including cathepsin L. Further degradation of the 54-kDa intermediate critically depends on cathepsin L and is modified by the structure of the 9-kDa cleavage product.  相似文献   

13.
It has been suggested that the successive proteolytic events leading to the production of the amyloid-beta protein from its precursor may take place at different intracellular locations. Using cultured human leptomeningeal smooth muscle cells and brain pericytes, we modulated the intracellular localization of the amyloid-beta precursor protein (APP) to study possible effects on its processing. By using immunofluorescence and immunoelectron microscopy we demonstrated that, under normal conditions, the APP is found in small intracellular vesicles, some of which were characterized as lysosomes. Both the cytokine interferon-gamma and the lysosomotropic drug chloroquine, but not the cytokines interleukin (IL)-1, IL-6, or tumor necrosis factor-alpha (TNF-alpha), induced an accumulation of APP in newly formed multivesicular body-like organelles. The secretion of the amyloid-beta precursor protein was slightly reduced by interferon-gamma or chloroquine. Double-labeling and tracer molecule uptake experiments showed that the multivesicular body-like organelles were part of the endocytic pathway. Our findings suggest that the multivesicular body-like organelles function as an intermediate organelle in the intracellular trafficking of the APP. Accumulation of the APP in this organelle is reflected by its reduced secretion from the cell.  相似文献   

14.
Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  相似文献   

15.
Su Y  Ryder J  Ni B 《FEBS letters》2003,546(2-3):407-410
Alzheimer's disease is characterized pathologically by extracellular amyloid beta protein (Abeta) deposition in the brain. The Abeta peptide, a 39-42 amino acid fragment, is derived from defined proteolysis of the amyloid precursor protein (APP) [Glenner et al., Appl. Pathol. 2 (1984) 357-369; Selkoe, Neuron 6 (1991) 487-498] and is the primary component of senile plaques. Although it is known that intracellular APP is subjected to posttranslational modification, the molecular mechanism that regulates the APP processing is not completely clear. In the present study, we demonstrates that H89, a specific inhibitor for cAMP dependent protein kinase A (PKA), inhibits Abeta production and APP secretion in a dose dependent manner in cells stably transfected with human APP bearing a 'Swedish mutation'. Concurrent with the effect, H89 inhibits C-terminal fragment of the APP. We also found that the PKA inhibitor abolishes the mature form of intracellular APP and accumulates the immature form. Finally, direct administration of H89 into brains of transgenic mice overexpressing human APP shows that the compound inhibits Abeta production in the hippocampal region. Our data suggests that PKA plays an important role in the maturation of APP associated with APP processing.  相似文献   

16.
The insulin proreceptor is a 190-kDa glycoprotein that is processed to mature alpha (135-kDa) and beta (95-kDa) subunits. In order to determine the role of carbohydrate chain processing in insulin receptor biogenesis, we investigated the effect of inhibiting glucose removal from core oligosaccharides of the insulin proreceptor with glucosidase inhibitors, castanospermine and 1-deoxynojirimycin. Cultured IM-9 lymphocytes treated with inhibitors had 50% reduction in surface insulin receptors as demonstrated by ligand binding, affinity cross-linking with 125I-insulin, and lactoperoxidase/Na 125I labeling studies. Degradation rates of surface labeled receptors were similar in both control and inhibitor-treated cells (t1/2 = 5 h); thus, accelerated receptor degradation could not account for this reduction. Biosynthetic labeling experiments with [3H]leucine and [3H]mannose identified an apparently higher molecular size proreceptor (approximately 205 kDa) that failed to show the characteristic decline with time as seen in the normal 190-kDa proreceptor. Along with this finding, the biosynthetic label appearing in the mature subunits was reduced in these inhibitor-treated cells. Endoglycosidase H treatment of both precursors produced identical 170-kDa bands. Carbohydrate chains released from the 205-kDa precursor by endoglycosidase H migrated in the same position as the Glc2-3Man9GlcNAc standards when separated by high performance liquid chromatography, whereas the 190-kDa proreceptor oligosaccharides migrated similar to the Man7-9GlcNAc chains. Although the mature subunits of control and inhibitor-treated cells demonstrated equal electrophoretic mobility, the endoglycosidase H-sensitive oligosaccharides of the mature subunits in treated cells also contained residues that migrated similar to the Glc2-3Man9GlcNAc standards. Thus, glucose removal from core oligosaccharides is apparently not necessary for the cleavage of the insulin proreceptor, but does delay processing of this precursor, which probably accounts for the reduction in cell-surface receptors.  相似文献   

17.
We describe a 20-kDa phosphorylated polypeptide, which is secreted constitutively at the apical surface of the kidney-derived Madin-Darby canine kidney cell line. Using polyclonal antibodies raised against this protein, we show that it is generated from a 60-kDa O-glycosylated, sulfated, and phosphorylated precursor protein by an intracellular proteolytic maturation step, which is pH-sensitive. Amino acid sequence analysis of the 20-kDa secreted polypeptide demonstrated that it displays 70% identity with the carboxyl-terminal amino acids of human osteopontin. The amino-terminal amino acid of the 20-kDa polypeptide corresponds to amino acid 213 of human osteopontin. Thrombin has been shown to cleave rat osteopontin in vivo and in vitro at amino acid 153, yielding two fragments of 28 and 26 kDa. A similar cleavage product can be detected by thrombin treatment of the 60-kDa precursor, suggesting that the precursor is identical or closely related to osteopontin. In the rat nephron, the protein has been localized along the luminal surfaces of the proximal and distal tubule and the collecting duct cells. These results show that in the kidney-derived cell line Madin-Darby canine kidney osteopontin or a closely related protein is proteolytically processed to a 20-kDa polypeptide, raising the possibility that diverse functions of osteopontin in various tissues might be attributed to specific processing to distinct polypeptides.  相似文献   

18.
Alzheimer's disease, a progressive neurodegenerative disorder, affects greater than 10% of the population of individuals greater than 65 years of age. A principal neuropathological feature of this disease is the senile plaque, a fibrillar extracellular deposit primarily composed of a approximately 4-kDa peptide, beta/A4, derived from the amyloid precursor protein (APP). Studies in cultured cells have documented that APP matures through a constitutive secretory pathway and is cleaved at or near the cell surface to release a large ectodomain into the extracellular space. To define the APP cleavage site, we constructed a Chinese hamster ovary cell line, which constitutively overexpresses human APP-770, and analyzed the COOH termini of secreted APP-770-related molecules. Using plasma desorption mass spectrometry and chemical microsequencing, we document that an APP cleavage site in Chinese hamster ovary cells leading to secretion occurs immediately COOH-terminal to lysine residue 687, which lies adjacent to the hydrophobic membrane-spanning domain.  相似文献   

19.
IL-1 beta is synthesized as an inactive 31-kDa intracellular protein, which is then processed upon secretion to an active 17-kDa carboxyl-terminal fragment. To identify the minimal portion of IL-1 beta required for activity, we constructed several deletion mutants of mature IL-1 beta. These included three amino-terminal deletions of 10, 16, and 81 amino acids, two carboxyl-terminal deletions of 17 and 72 amino acids, and one internal fragment between amino acids 17 and 81. Expression of the mutants was monitored by Western blots and immunoprecipitation. With one exception, all of these mutants and the full length 17-kDa IL-1 beta were expressed as soluble protein in Escherichia coli and could be assayed for activity and receptor binding in lysates without further purification. Whereas the intact 17-kDa IL-1 beta retained full biologic activity (greater than 10(7) U/ml of lysate) and competed for binding with 125I-labeled IL-1 beta, none of the lysates containing IL-1 beta deletion mutant proteins had activity or competed for binding to receptor at significantly higher concentrations. The loss of function in the smallest C-terminal deletion mutant does not appear to be due to the direct involvement of these C-terminal residues in receptor binding because both monoclonal and polyclonal antisera directed to this region bind to IL-1 beta but do not neutralize its activity. Therefore, this region is probably indirectly involved in sustaining the structure of the receptor-binding site.  相似文献   

20.
Apolipoprotein (apo) E3-Leiden is a variant of apoE that is associated with dominant expression of type III hyperlipoproteinemia and that is defective in binding to the low density lipoprotein receptor. Therefore, the structure of apoE3-Leiden was investigated. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis apoE3-Leiden and its 22-kDa amino-terminal thrombolytic fragment migrated with a higher than normal apparent molecular weight. The structural abnormality of apoE3-Leiden was determined by sequencing its CNBr-, tryptic-, and Staphylococcus aureus V8 protease-generated peptides. In contrast to normal apoE3, which has a cysteine at residue 112, apoE3-Leiden does not contain any cysteine and has an arginine at position 112 (as does apoE4, which also completely lacks cysteine). The basis for the molecular weight difference was determined to be a seven-amino acid insertion that is a tandem repeat of residues 121-127 of normal apoE3, i.e. Glu-Val-Gln-Ala-Met-Leu-Gly, resulting in apoE3-Leiden having 306 amino acids rather than 299. The negatively charged glutamyl residues within the insertion compensates for the arginine substitution at residue 112; thus apoE3-Leiden focuses in the E3 position. The low density lipoprotein receptor binding activities of both intact apoE3-Leiden and its 22-kDa thrombolytic fragment were determined in an in vitro assay. Although apoE3-Leiden had only about 25% of normal binding activity, its 22-kDa thrombolytic fragment had nearly normal binding, suggesting that the carboxyl-terminal domain of apoE3-Leiden modulates the receptor binding function of its amino-terminal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号