首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Due to its unique chemistry magnesium (Mg) is subject to various cycling processes in agricultural ecosystems. This high mobility of Mg needs to be considered for crop nutrition in sustainable agricultural systems. The Mg mobility in soils and plants and its consequences for crop nutrition are understood, but recent findings in crop Mg uptake, translocation and physiology particularly under adverse growth conditions give new insights into the importance of Mg in crop production.

Scope

The aim of this review is to combine the knowledge on the origin and mobility of Mg in soils with the role of Mg in plant stress physiology and recent evidence on the principles of crop Mg uptake. The question is addressed whether the progress made in Mg research, particularly on the role of Mg in stress physiology, makes a revision of the development of Mg fertilization recommendations necessary.

Conclusions

New insights into Mg uptake and utilization but particularly into the role of Mg in increasing crop tolerance to various stresses indicate changes in the crop Mg demand under adverse growth conditions. Future work should incorporate these findings in optimization of site-specific balanced fertilization programs particularly under stress conditions.  相似文献   

2.

Background and aims

Year of release of a cultivar reflects the agricultural and breeding practices of its time; we hypothesize that there are differences in mycorrhizal responsiveness of new high yielding and old crop plants and landraces. We evaluated the importance of the year of release on mycorrhizal responsiveness, arbuscular mycorrhizal (AM) fungal root colonization and P efficiency. We also analyzed the effect of experimental treatments, P efficiency (P acquisition and P utilization efficiency) and AM fungal root colonization on a potential mycorrhizal responsiveness trend for year of release.

Methods

We conducted a meta-analysis on 39 publications working on 320 different crop plant genotypes.

Results

New cultivars were less intensely colonized but were more mycorrhiza-responsive (and possibly dependent) compared to ancestral genotypes. This trend was potentially influenced by the moderator variables density, pre-germination, plant, plant type and AMF species. AM root colonization was also important for the mycorrhizal responsiveness trend for year of release, but P efficiency was not.

Conclusions

With the data available we could find no evidence that new crop plant genotypes lost their ability to respond to mycorrhiza due to agricultural and breeding practices.  相似文献   

3.

Background

Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding.

Aim of Review

We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality.

Key Scientific Concepts of Review

Translational metabolomics applied to crop breeding programs.
  相似文献   

4.
Crop response to magnesium fertilization as affected by nitrogen supply   总被引:1,自引:0,他引:1  

Background

Crop yield depends in large part on the availability and accessibility of nitrogen in the soil. For optimal yield, the soil nitrogen must be available at critical periods of crop development, and in a form that is accessible for plant uptake and use. Ancillary crop nutrients can alter the plant’s ability to access and utilize nitrogen. Therefore, crop fertilization with magnesium should focus on its effect on nitrogen management. This conceptual review aims to assess the present state of knowledge regarding the importance of magnesium in fulfilling both objectives.

Scope

The response to fertilizer magnesium of high-yielding wheat, maize, sugar beet and potato crops was evaluated using published and unpublished data on yield, yield components and nitrogen uptake. A simple, stepwise regression and path analysis was applied to explain the effect of fertilizer magnesium on yield and yield components.

Conclusions

The effect of soil or foliar applied magnesium on yield of crops was inconsistent due to (i) weather experienced during the growth season, (ii) rates of applied fertilizer nitrogen, and (iii) the (natural background levels of?) magnesium available in the soil. The yield increase due to magnesium application was related to the extra supply of nitrogen. In cereals, magnesium application resulted in a higher number of ears and/or thousand grain weight (TGW), stressing the magnesium-sensitive stages of yield formation. The increase of sugar beet yield was most pronounced in dry years. The main conclusion gleaned from the review underlines a positive effect of magnesium on nitrogen uptake efficiency. The optimal yield forming effect of fertilizer magnesium can generally occur under conditions of relatively low nitrogen supply (soil + fertilizer nitrogen), but high supply of magnesium. This phenomenon can best be described as “magnesium-induced nitrogen uptake”.  相似文献   

5.

Key message

The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed.

Abstract

Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.  相似文献   

6.

Background and aims

How prehistoric human settlement activities have changed soil chemical properties, plant nutrition and growth of contemporary crops is a question that has not been satisfactorily addressed. The aim of this paper was to study to what extent nutrient availability in the soil, together with nutrition and growth of spring barley (Hordeum vulgare), improved on sites of former sunken buildings (cropmarks) in comparison to their surroundings (controls) 1,700 years after abandonment of the buildings.

Methods

In the Czech Republic, a unique prehistoric settlement with many sunken buildings was discovered during aerial reconnaissance from cropmarks in stands of cereals. Soil and biomass samples were collected from cropmarks and controls in a barley crop in June 2012.

Results

A substantially higher content of organic matter, higher pH and concentrations of plant-available (Mehlich III) P, Ca, Mg, Cu and Zn were recorded in the sub-soil layer in cropmarks compared with controls, indicating the accumulation of wood ash and organic waste. In the arable layer, pH and concentrations of P, Ca and Mg were generally very high in both positions. Cropmarks were characterised by barley plants that were twice as tall as the controls, with significantly higher Ca, Mg and P concentrations.

Conclusions

Prehistoric settlement activity affected nutrient availability and plant growth in the previously settled area even after 1,700 years. We conclude that the chemical signature of prehistoric settlement activity can be detected from chemical analysis of the sub-soil layer as well as analysis of the contemporary arable layer and crop biomass.  相似文献   

7.

Background and aims

Bioinoculants are commonly used for enhancing crop productivity but little information is available on their effect on key microbial communities such as those involved in the cycling of nitrogen, a major plant nutrient. Here we developed a formulation combining different bioinoculants (Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum) and examined their effects on both Cajanus cajan growth and N-cycling microorganisms.

Methods

Seven bioinoculant combinations were evaluated in pots under field conditions, and their effects on plant growth were measured using various biometric parameters. The abundances of the total bacterial and crenarchaeal communities along with those involved in N-cycling were monitored by qPCR at vegetative, pre-flowering, flowering and maturity stages of the crop.

Results

A significant increase in growth of C. cajan was observed when treated with mixture of three bioinoculants with dry biomass and grain yield increase by 330?% and 238?%, respectively. The combination of three bioinoculants also increased the abundance of nitrogen fixers and denitrifiers towards the flowering and maturity stages.

Conclusions

The consortium of three bioinoculants increased plant growth and grain yield of C. cajan. These bioinoculants also had a positive effect on the abundance of several N-cycling microbial communities stressing the importance of understanding non-target effects of bioinoculants together with their impact on plant growth.  相似文献   

8.

Aims

Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations including Echinochloa crus-galli (L.) Beauv. Indica rice cultivars can produce high yields and suppress barnyardgrass, but have not been commercially acceptable in the U.S. due to inferior agronomic traits and grain quality. Our objectives were to combine high yield and weed-suppressive characteristics from indica cultivars with commercially acceptable grain quality and plant types from long-grain cultivars grown in the southern U.S.

Methods

Crosses between indica and commercial tropical japonica (cv. Katy, and cv. Drew) rice were evaluated for weed suppression and agronomic traits in a breeding program.

Results

In some tests, the selection STG06L-35-061 was nearly as weed suppressive as PI 312777, the suppressive parent, and more suppressive than its tropical japonica parents. Its main crop yield is commercially acceptable, and intermediate between PI 312777 and Katy. Its milling quality and cooking quality are similar to long-grain commercial cultivars, and it has resistance to rice blast disease. Marker analyses identified introgressions from the indica parents on chromosomes 1 and 3 of STG06L-35-061 that require further analysis as possible sources of weed suppressive traits.

Conclusions

STG06L-35-061 might be suitable for organic rice or reduced input conventional systems.  相似文献   

9.

Aims

Despite our current understanding of plant nitrogen (N) uptake and soil N dynamics in arable systems, the supply and demand of N are infrequently matched as a result of variable seasonal and soil conditions. Consequently, inefficiencies in N utilisation often lead to constrained production and can contribute to potential environmental impacts. The aim of this study was to examine the influence of plant residue quality (C/N ratio) and extent of residue incorporation into soil on temporal changes in soil mineral N and the associated plant N uptake by wheat in the semi-arid agricultural production zone of Western Australia.

Methods

Oat (Avena sativa); lupin (Lupinus angustifolius) and field pea (Pisum sativum) were incorporated into a Red-Brown Earth using varying degrees of mechanical disturbance (0 to 100% residue incorporated). Soil samples for inorganic N (NO 3 ? and NH 4 + ) profiles (0?C50?cm), microbial biomass-C (0?C50?cm) and plant N uptake were taken throughout the growing season of the subsequent wheat (Triticum aestivum) crop. Grain yield and yield components were determined at harvest.

Results

Despite observed treatment effects for plant residue type and soil disturbance, fluctuations in inorganic N were more readily influenced by seasonal variability associated with wet-dry cycles. Treatment effects resulting from residue management and extent of soil disturbance were also more readily distinguished in the NO 3 ? pool. The release of N from crop residues significantly increased (p?=?0.05) with greater soil-residue contact which related to the method of incorporation; the greater the extent of soil disturbance, the greater the net supply of inorganic N. Differences in microbial biomass-C were primarily associated with the type of plant residue incorporated, with higher microbial biomass generally associated with legume crops. No effect of residue incorporation method was noted for microbial biomass suggesting little effect of soil disturbance on the microbial population in this soil.

Conclusions

Despite differences in the magnitude of N release, neither crop type nor incorporation method significantly altered the timing or pattern of N release. As such asynchrony of N supply was not improved through residue or soil management, or through increased microbial biomass in this semi-arid environment. N fluxes were primarily controlled by abiotic factors (e.g. climate), which in this study dominated over imposed agricultural management practices associated with residue management.  相似文献   

10.

Background and aims

We studied the effect of different biochar (BC) application rates on soil properties, crop growth dynamics and yield on a fertile sandy clay loam in boreal conditions.

Methods

In a three-year field experiment conducted in Finland, the field was divided into three sub-experiments with a split-plot experimental design, one for each crop: wheat (Triticum aestivum), turnip rape (Brassica rapa), and faba bean (Vicia faba). The main plot factor was BC rate (0, 5 and 10 t DM ha?1) and the sub-plot factor was the N-P-K fertiliser rate. Soil physico-chemical properties as well as plant development, yield components and quality were investigated.

Results

BC addition did not significantly affect the soil chemical composition other than the increased C and initially increased K contents. Increased soil moisture content was associated with BC application, especially at the end of the growing seasons. BC decreased the N content of turnip rape and wheat biomass in 2010, thus possibly indicating an initial N immobilisation. In dry years, the seed number per plant was significantly higher in faba bean and turnip rape when grown with BC, possibly due to compensation for decreased plant density and relieved water deficit. However, the grain yields and N uptake with BC addition were not significantly different from the control in any year.

Conclusions

Even though BC application to a fertile sandy clay loam in a boreal climate might have relieved transient water deficit and thereby supported yield formation of crops, it did not improve the yield or N uptake.  相似文献   

11.
Past, present and future of organic nutrients   总被引:3,自引:0,他引:3  

Background

Slowing crop yield increases despite high fertiliser application rates, declining soil health and off-site pollution are testimony that many bioproduction systems require innovative nutrient supply strategies. One avenue is a greater contribution of organic compounds as nutrient sources for crops. That plants take up and metabolise organic molecules (‘organic nutrients’) has been discovered prior to more recent interest with scientific roots reaching far into the 19th century. Research on organic nutrients continued in the early decades of the 20th century, but after two world wars and yield increases achieved with mineral and synthetic fertilisers, a smooth continuation of the research was not to be expected, and we find major gaps in the transmission of methods and knowledge.

Scope

Addressing the antagonism of ‘organicists’ and ‘mineralists’ in plant nutrition, we illustrate how the focus of crop nutrition has shifted from organic to inorganic nutrients. We discuss reasons and provide evidence for a role of organic compounds as nutrients and signalling agents.

Conclusion

After decades of focussing on inorganic nutrients, perspectives have greatly widened again. As has occurred before in agricultural history, science has to validate agronomic practises. We argue that a framework that views plants as mixotrophs with an inherent ability to use organic nutrients, via direct uptake or aided by exoenzyme-mediated degradation, will transform nutrient management and crop breeding to complement inorganic and synthetic fertilisers with organic nutrients.  相似文献   

12.

Background and aims

Members of the genus Pseudomonas are common inhabitants of rhizospheres and soils, and it is known that soil types and crop species influence their population density and structure. 20?×?106 ha are cultivated under no-tillage in Argentina and there is a need to find new biologically-based soil quality indexes to distinguish between sustainable and non-sustainable agricultural practices. Pseudomonads abundance and community structure were analyzed in no-till soils with different agricultural practices, in productive fields along 400 km of Argentinean Pampas.

Methods

We sampled soils and root systems from agricultural plots in which sustainable or non-sustainable agricultural practices have been applied. Samples were collected in summer and winter during 2010 and 2011. Culturable fluorescent and total pseudomonads were enumerated by plating on Gould’s selective medium S1. Colonies from these plates served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA.

Results

Abundance of total and fluorescent culturable pseudomonads in bulk soils was influenced by seasonal changes and agricultural practices. Rhizospheric counts from the same crop were affected by agricultural treatments. Also, crop species influenced pseudomonads density in the rhizosphere. Combined PCR-RFLP profile of both genes showed a seasonal grouping of samples.

Conclusions

Sustainable soil management seems to promote pseudomonads development in soils, favoring root colonization of crops from those plots. Crop species influence total pseudomonads load of rhizospheres and its community structure. Total or relative pseudomonads load could function as soil quality indicator of good agricultural practices.  相似文献   

13.

Aims

The aim of this study was to compare the residual effects in soil and the influence on a flax crop (Linum usitatissimum L.) of applying Zn from different commercial synthetic chelates. The chelates used were: Zn-EDDHSA (Zn-ethylenediamine-N,N'-bis(2-hydroxyphenylacetate), Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDTA-HEDTA and Zn-DTPA-HEDTA-EDTA (Zn-DTPA, Zn-diethylenetriaminepentaacetate).

Methods

The experiment was conducted in a greenhouse using two different soils (Soilacid: a weakly acidic soil and Soilcalc: a calcareous soil). Each treatment was administered, in a single application, to a previous flax crop at different Zn application rates. The yield and some of the flax crop quality parameters were determined in the present flax crop. Soil Zn behavior was then evaluated by single and sequential extraction.

Results

In Soilacid, the Zn-HEDTA and Zn-EDDHSA fertilizers produced the highest plant parameters values (total Zn concentration, total uptake Zn), percentages of Zn utilization and values of the transfer factor, TF. In contrast, in Soilcalc these fertilizers produced the lowest in-plant values, with this soil producing the highest yield, quality, percentage of utilization and TF associated with the application of Zn-DTPA-HEDTA-EDTA and Zn-EDTA fertilizers. However, the Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA in Soilcalc, were associated with the greatest amounts of bioavailable Zn in soil and also with the highest Zn concentrations associated with the sum of the most labile fractions (water soluble plus exchangeable fractions).

Conclusions

The residual Zn produced by the different fertilizer treatments estimated using the DTPA, Mehlich-3- and LMWOAs methods- was available in sufficient quantities that it not be necessary to add any further Zn (which could have resulted in over-fertilization) for the subsequent crop to either of the soils.  相似文献   

14.
15.

Background and Aims

Evidence shows that plants modify their microbial environment leading to the “crop rotation effect”, but little is known about the changes in rhizobacterial community structure and functionality associated with beneficial rotation effects.

Methods

Polymerase chain reaction (PCR) and 454 GS FLX amplicon pyrosequencing were used to describe the composition of the rhizobacterial community evolving under the influence of pea, a growth promoting rotation crop, and the influence of three genotypes of chickpea, a plant known as an inferior rotation crop. The growth promoting properties of these rhizobacterial communities were tested on wheat in greenhouse assays.

Results

The rhizobacterial communities selected by pea and the chickpea CDC Luna in 2008, a wet year, promoted durum wheat growth, but those selected by CDC Vanguard or CDC Frontier had no growth-promoting effect. In 2009, a dry year, the influence of plants was mitigated, indicated that moisture availability is a major driver of soil bacterial community dynamics.

Conclusion

The effect of pulse crops on soil biological quality varies with the crop species and genotypes, and certain chickpea genotypes may induce positive rotation effects on wheat. The strength of a rotation effect on soil biological quality is modulated by the abundance of precipitation.  相似文献   

16.

Aims

Phosphorus (P) limits crop yield and P-fertilisers are frequently applied to agricultural soils. However, supplies of quality rock phosphate are diminishing. Plants have evolved mechanisms to improve P-acquisition and understanding these could improve the long-term sustainability of agriculture. Here we examined interactions between root hairs and arbuscular mycorrhizal (AM) colonisation in barley (Hordeum vulgare L.).

Methods

Barley mutants exhibiting different root hair phenotypes, wild type barley and narrowleaf plantain (Plantago lanceolata L.) were grown in the glasshouse in P-sufficient and P-deficient treatments and allowed to develop AM colonization from the natural soil community. Plants were harvested after 6 weeks growth and root hair length, AM-fungal colonisation, shoot biomass and P-accumulation measured.

Results

Under P-deficient conditions, root hair length and AM colonisation were negatively related suggesting that resources are allocated to root hairs rather than to AM fungi in response to P-deficiency. There was evidence that barley and narrowleaf plantain employed different strategies to increase P-acquisition under identical conditions, but root hairs were more effective.

Conclusions

This research suggests future barley breeding programmes should focus on maintaining or improving root hair phenotypes and that pursuing enhancements to AM associations under the prevalent agricultural conditions tested here would be ineffectual.  相似文献   

17.

Purpose

Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.

Methods

We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.

Conclusions

The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.  相似文献   

18.

Background and aims

Modern maize breeding has increased maize yields worldwide. The changes in above-ground traits accompanying yield improvement are well-known, but less information is available as to the effect of modern plant breeding on changes in maize root traits.

Methods

Root growth, nitrogen uptake, dry matter accumulation and yield formation of six maize hybrids released from 1973 to 2000 in China were compared. Experiments were conducted under low and high nitrogen supply in a black soil in Northeast China in 2010 and 2011.

Results

While nitrogen accumulation, dry matter production and yield formation have been increased, modern maize breeding in China since 1990 has reduced root length density in the topsoil without much effect on root growth in the deeper soil. The efficiency of roots in acquiring N has increased so as to match the requirement of N accumulation for plant growth and yield formation. The responses of root growth, nitrogen and dry matter accumulation, and grain yield to low-N stress were similar in the more modern hybrids as in the older ones.

Conclusions

Modern maize breeding has constitutively changed root and shoot growth and plant productivity without producing any specific enhancement in root responsiveness to soil N availability.  相似文献   

19.

Aims

Drought resistance of crops is one of the great challenges for the world’s agricultural systems. Although the concept of ‘drought hardening’ has been known for many years, very little has been done on pre-harvest treatment that can help leafy vegetable crops resist drought stress on a retailer’s shelf. Our hypothesis was that for pot-grown vegetables a saline treatment could be found that would reduce transpiration pre- and post-harvest, but not harvestable yield.

Methods

Coriander (Coriandrum sativum L.) was used as a model plant; several accessions (k-4, k-43, k-52, k-60 and k-62) from N.I. Vavilov Research Institute of Plant Industry, Russia and two commercial cultivars—Kashmir and Americanum—were studied. Plant growth, weight, transpiration, net CO2 assimilation, respiration, wilting, apparent petioles rigidity, leaf sodium content, elemental analysis and osmotic potential were assessed.

Results

We found that minor salinity (12.5?mM Na2SO4) triggered both drought and salt resistance mechanisms, which regulate appearance and shelf-life of pot-grown coriander.

Conclusion

We found that the drought avoidance mechanisms (i.e. decreased transpiration and increased water use efficiency) and salt tolerance mechanisms induced by pre-harvest treatment could significantly postpone wilting and improve post-harvest habit of a leafy vegetable crop.  相似文献   

20.
Andrea Rosanoff 《Plant and Soil》2013,368(1-2):139-153

Aims

Decreasing mineral concentrations in high-yield grains of the Green Revolution have coincided in time with rising global cardiovascular disease (CVD) mortality rates. Given the Magnesium (Mg) Hypothesis of CVD, it’s important to assess any changes in food crop Mg concentrations over the past 50+ years.

Methods

Using current and historical published sources, Mg concentrations in “old” and “new” wheats, fruits and vegetables were listed/calculated (dry weight basis) and applied to reports of USA’s historic Mg supply, 1900–2006. Resulting trend in USA Mg supply was compared with USA trend in CVD mortality. Human Mg intake studies, old and new, were compared with the range of reported human Mg requirements.

Results

Acknowledging assessment difficulties, since the 1850s, wheats have declined in Mg concentration 7–29 %; USA and English vegetables’ Mg declined 15–23 %, 1930s to 1980s. The nadir of USA food Mg supply in 1968 coincides with the USA peak in CVD mortality. As humans transition from “traditional” to modern processed food diets, Mg intake declines.

Conclusions

Rising global CVD mortality may be linked to lower Mg intakes as world populations transition from traditional high Mg foods to those low in Mg due to declining crop Mg and processing losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号