首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this study was to investigate the effect of repeated harvesting on the content of caffeic acid (CA) and seven species of caffeoylquinic acids (CQAs) in sweet potato leaves using a newly developed high-performance liquid chromatography method. Six cultivars and two breeding lines were used in this study. Leaves were collected at monthly intervals from 1st harvest (May) to 4th harvest (August) in 2011 and 2012. ANOVA analysis revealed that the contents of CQAs were significantly different among all cultivars and breeding lines, but no significant differences were found for CA. No annual variation was confirmed in CA and CQAs. Repeated harvest of sweet potato leaves affected the content of only 4-CQA and 5-CQA. Post-hoc comparisons using Tukey’s method indicated that the contents of 4-CQA and 5-CQA in sweet potato leaves harvested at first time were significantly higher compared to those at the other harvest times.  相似文献   

3.
Biosynthesis of caffeoylquinic acids occurs via the phenylpropanoid pathway in which the phenylalanine ammonia-lyase (PAL) acts as a key-control enzyme. A full-length cDNA (pF6), corresponding to a PAL gene (CcPAL1), was isolated by screening a Coffea canephora fruit cDNA library and its corresponding genomic sequence was characterized. Amplification of total DNA from seven Coffea species revealed differences in intronic length. This interspecific polymorphism was used to locate the gene on a genetic map established for a backcross progeny between Coffea pseudozanguebariae and C. dewevrei. The CcPAL1 gene was found on the same linkage group, but genetically independent, as a caffeoyl-coenzyme A-O-methyltransferase gene, another gene intervening in the phenylpropanoid pathway. In the same backcross, a lower caffeoylquinic acid content was observed in seeds harvested from plants harbouring the C. pseudozanguebariae CcPAL1 allele. Involvement of the CcPAL1 allelic form in the differential accumulation of caffeoylquinic acids in coffee green beans is then discussed.  相似文献   

4.
A single-laboratory validation study was conducted on an HPLC method for the detection and quantification of caffeic acid (CA) and seven species of caffeoylquinic acids (CQAs) in lyophilized sweet potato leaves. The procedure for extraction of the analytes from the matrix and the HPLC conditions for the efficient separation of CA and CQAs were optimized. In the proposed method, a relative response factor to one of the CQAs (5-CQA) was used to quantify the others. The method performed well in terms of precision when carried out on five different days and demonstrated Horwitz ratio (HorRat) scores ranging from 0.5 to 1.0 for all analytes, which were well within the limits of performance acceptability. Accuracy testing at three levels showed an overall recovery of 94% when duplicated on five different days. Moreover, a stability study revealed that all analytes in both standard solution and sample extract were stable for 28?days.  相似文献   

5.
Miscanthus × giganteus is a source of platform chemicals and bioethanol through fermentation. Cinnamates in leaves and stems were analysed by LC–ESI-MSn. Free phenols were extracted and separated chromatographically. More than 20 hydroxycinnamates were identified by UV and LC–ESI-MSn. Comparative LC–MS studies on the leaf extract showed isomers of O-caffeoylquinic acid (3-CQA, 4-CQA and 5-CQA), O-feruloylquinic acid (3-FQA, 4-FQA and 5-FQA) and para-coumaroylquinic acid (3-pCoQA and 5-pCoQA). Excepting 3-pCoQA, all were also detected in stem. 5-CQA dominated in leaf; a mandelonitrile–caffeoylquinic acid dominated in stem. Three minor leaf components were distinguished by fragmentation patterns in a targetted MS2 experiment as dicaffeoylquinic acid isomers. Others (Mr 516) were tentatively identified as hexosylcaffeoyl-quinates. Three positional isomers of O-caffeoylshikimic acid were minor components. p-Hydroxybenzaldehyde was also a major component in stem. This is the first report of the hydroxycinnamic acid profile of leaves and stems of M. × giganteus.  相似文献   

6.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   

7.
Caffeoylquinic acids are found in artichokes, and they are currently considered important therapeutic or preventive agents for treating Alzheimer’s disease and diabetes. We transformed artichoke [the cultivated cardoon or Cynara cardunculus var. altilis DC (Asteraceae)] with the rolC gene, which is a known inducer of secondary metabolism. High-performance liquid chromatography with UV and high-resolution mass spectrometry (HPLC-UV-HRMS) revealed that the predominant metabolites synthesized in the transgenic calli were 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and chlorogenic acid. The rolC-transformed calli contained 1.5 % caffeoylquinic acids by dry weight. The overall production of these metabolites was three times higher than that of the corresponding control calli. The enhancing effect of rolC remained stable over long-term cultivation.  相似文献   

8.
The aim of this study was to evaluate the phytochemical and genetic diversity, relationships and identification of mate (Ilex paraguariensis A.St .‐Hil .) elite genetic resources belonging to the Brazilian germplasm collection and mate breeding program. Mate has been studied due to the presence of phytochemical compounds, especially methylxanthines and phenolic compounds. The samples were collected from the leaves of 76 mate elite genetic resources (16 progenies × 5 localities). Total DNA was extracted from mate leaves and 20 random primers were used for DNA amplification. Methylxanthines (caffeine and theobromine) and phenolic compounds (chlorogenic, neochlorogenic, and criptochlorogenic acids) were quantified by HPLC. The genetic divergence estimated was higher within (92%) than among (8%) the different populations. Analysis of genetic distance between origins provided the formation of two groups by UPGMA cluster analysis, with higher polymorphism (94.9%). The average content of caffeine ranged from 0.01 to 1.38% and theobromine of 0.10 – 0.85% (w/w). The caffeoylquinic acids concentrations (1.43 – 5.38%) showed a gradient 3‐CQA > 5‐CQA > 4‐CQA. The coefficient of genetic variation (CVg) was of low magnitude for all mono‐caffeoylquinics acids. Significant correlations (positive and negative) were observed between the phytochemical compounds. Genetic diversity analysis performed by RAPD markers showed a greater intra‐populational diversity; genetic resources with low caffeine and higher theobromine content were identified and can be used in breeding programs; the correlation between methylxanthines and phenolic compounds can be used as a good predictor in future studies.  相似文献   

9.
The relationship between amino acid and sugar export to thephloem was studied in young wheat plants (Triticum aestivumL. ‘Pro-INTA, Isla Verde’) using the EDTA-phloemcollection technique. Plants grown with a 16 h photoperiod showeda rapid decrease in the concentration of sugars and amino acidsin the phloem exudate from the beginning of the dark period.When plants grown with a 16 h photoperiod were kept in the darkfor longer than 8 h the free amino acid content in leaves andexudate (on a dry weight basis) increased continually throughoutthe 72 h of darkness. During the first 24 h of darkness thesugars in the phloem exudate decreased to 30% of the initialvalue, and returned to the control level when plants were returnedto light. When plants grown under low light intensity for 10d were transferred to high light intensity, they showed an increasein leaf sugar content (dry weight basis) after 3 d but therewere no differences in leaf free amino acid content (dry weightbasis) compared to low-light plants. The sugar concentrationin the phloem exudate was increased by higher light intensities,but there was no difference in the amino acid concentrationof the phloem exudate, and thus the amino acid:sugar ratio inthe phloem decreased in the high-light plants. The present resultssuggest that amino acids can be exported to the phloem independentlyof the export of sugars. Copyright 1999 Annals of Botany Company Sugar exudation, amino acid transport, nitrogen, phloem, transport, wheat, Triticum aestivum L.  相似文献   

10.
The contents of sucrose and amino acids in the leaves, phloemsap and taproots have been analysed in three experimental hybridsof sugar beet and compared with earlier analysed leaf and phloemsap contents in spinach and barley. The three hybrids accumulatedsucrose and amino acids to various extents in the mature rootsas well as in the young taproots (9–12 weeks). The differencesin the sucrose-to-amino acid ratios in the taproots were reflectedin the corresponding ratios in the phloem sap. The leaf contentsof sucrose and amino acids in the three hybrids were found tobe very similar to each other and also to those in spinach andbarley. In contrast, the phloem concentration of sucrose (1.3M) was much higher, and that of amino acids much lower thanin spinach and barley. In the taproots, the overall concentrationof sucrose was about half that in the phloem sap. From thesefindings it is con cluded that the decisive factor in the highsucrose accumulation in sugar beet roots is the very efficientprocess of phloem loading in the leaves. The patterns of theamino acids in the phloem sap and in the taproots resembledthose in the leaves, indicating that there is no special transportform for a-amino nitrogen from the leaves to the roots, butall amino acids which are present in the cytosol are translocated. Key words: Amino acids, Beta vulgaris L., phloem sap, sucrose, tap roots, transport  相似文献   

11.
To analyse the molecular mechanisms of phytoplasma pathogenicity, the comprehensive metabolomic changes of mulberry leaf and phloem sap in response to phytoplasma infection were examined using gas chromatography‐mass spectrometry. The metabolic profiles obtained revealed that the metabolite compositions of leaf and phloem sap were different, and phytoplasma infection has a greater impact on the metabolome of phloem sap than of leaf. Phytoplasma infection brought about the content changes in various metabolites, such as carbohydrates, amino acids, organic acids, etc. Meanwhile, the results of biochemical analysis showed that the degradation of starch was repressed, and the starch content was increased in the infected leaves. In addition, we found that phytoplasma infection changed the levels of abscisic acid and cytokinin and break phytohormone balance. Interestingly, our data showed that the contents of H2O2 and superoxide were increased in the infected leaves, but not in the phloem saps. Based on the results, the expression levels of the genes involved in the metabolism of some changed metabolites were examined, and the potential molecular mechanisms of these changes were discussed. It can be concluded that both the leaf and phloem saps have a complicated metabolic response to phytoplasma infection, but their response mechanisms were different.  相似文献   

12.
W. R. Mills  K. W. Joy 《Planta》1980,148(1):75-83
A procedure is described for the rapid (<5 min) isolation of purified, physiologically active chloroplasts from Pisum sativum L. Mitochondrial and microbody contamination is substantially reduced and broken chloroplasts are excluded by washing through a layer containing a treated silica sol. On average the preparations contain 93% intact chloroplasts and show high rates of 14CO2 fixation and CO2-dependent O2 evolution (over 100 mol/mg chlorophyll(chl)/h); they are also able to carry out light-driven incorporation of leucine into protein (4 nmol/mg chl/h). The amino-acid contents of chloroplasts prepared from leaves and from leaf protoplasts have been determined. Asparagine is the most abundant amino acid in the pea chloroplast (>240 nmol/mg chl), even thought it is proportionately lower in the chloroplast relative to the rest of the cell. The chloroplasts contain about 20% of many of the amino acids of the cell, but for individual amino acids the percentage in the chloroplast ranges from 8 to 40% of the cell total. Glutamic acid, glutamine and aspartic acid are enriched in the chloroplasts, while asparagine, homoserine and -(isoxazolin-5-one-2-yl)-alanine are relatively lower. Leakage of amino acids from the chloroplast during preparation or repeated washing was ca. 20%. Some differences exist between the amino-acid composition of chloroplasts isolated from intact leaves and from protoplasts. In particular, -aminobutyric acid accumulates to high levels, while homoserine and glutamic acid decrease, during protoplast formation and breakage.  相似文献   

13.
Extracts from artichoke leaves are traditionally used in the treatment of dyspeptic and hepatic disorders. Various potential pharmacodynamic effects have been observed in vitro for mono- and dicaffeoylquinic acids (e.g. chlorogenic acid, cynarin), caffeic acid and flavonoids (e.g. luteolin-7-O-glucoside) which are the main phenolic constituents of artichoke leaf extract (ALE). However, in vivo not only the genuine extract constituents but also their metabolites may contribute to efficacy. Therefore, the evaluation of systemic availability of potential bioactive plant constituents is a major prerequisite for the interpretation of in vitro pharmacological testing. In order to get more detailed information about absorption, metabolism and disposition of ALE, two different extracts were administered to 14 healthy volunteers in a crossover study. Each subject received doses of both extracts. Extract A administered dose: caffeoylquinic acids equivalent to 107.0 mg caffeic acid and luteolin glycosides equivalent to 14.4 mg luteolin. Extract B administered dose: caffeoylquinic acids equivalent to 153.8 mg caffeic acid and luteolin glycosides equivalent to 35.2 mg luteolin. Urine and plasma analysis were performed by a validated HPLC method using 12-channel coulometric array detection. In human plasma or urine none of the genuine target extract constituents could be detected. However, caffeic acid (CA), its methylated derivates ferulic acid (FA) and isoferulic acid (IFA) and the hydrogenation products dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) were identified as metabolites derived from caffeoylquinic acids. Except of DHFA all of these compounds were present as sulfates or glucuronides. Peak plasma concentrations of total CA, FA and IFA were reached within 1 h and declined over 24 h showing almost biphasic profiles. In contrast maximum concentrations for total DHCA and DHFA were observed only after 6-7 h, indicating two different metabolic pathways for caffeoylquinic acids. Luteolin administered as glucoside was recovered from plasma and urine only as sulfate or glucuronide but neither in form of genuine glucosides nor as free luteolin. Peak plasma concentrations were reached rapidly within 0.5 h. The elimination showed a biphasic profile.  相似文献   

14.
The caffeoylquinic acid derivatives, 3-mono-O-caffeoylquinic acid (chlorogenic acid, ChA), 3,4-di-O-caffeoylquinic acid (3,4-diCQA), 3,5-di-O-caffeoylquinic acid (3,5-diCQA), 4,5-di-O-caffeoylquinic acid (4,5-diCQA) and 3,4,5-tri-O-caffeoylquinic acid (3,4,5-triCQA), and caffeic acid (CA) were isolated from the sweetpotato (Ipomoea batatas L.) leaf. We examined the antimutagenicity of these caffeoylquinic acid compounds to promote new uses of the sweetpotato leaf. These caffeoylquinic acid derivatives effectively inhibited the reverse mutation induced by Trp-P-1 on Salmonella typhimurium TA 98. The antimutagenicity of these derivatives was 3,4,5-triCQA > 3,4-diCQA = 3,5-diCQA = 4,5-diCQA > ChA in this order. There was no difference in the antimutagenicity of all dicaffeoylquinic acid derivatives. A comparison of the activities and structures of these compounds suggested that the number of caffeoyl groups bound to quinic acid played a role in the antimutagenicity of the caffeoylquinic acid derivatives. The sweetpotato leaves contained distinctive polyphenolic components with a high content of mono-, di-, and tricaffeoylquinic acid derivatives and could be a source of physiological functions.  相似文献   

15.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

16.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

17.
Fatty acid biosynthesis by isolated plastids has been examined in relation to chloroplast development and differentiation in leaves of maize plants grown in light for 7 days. Biosynthesis of fatty acids from acetate by proplastids prepared from the basal regions of the leaf was low and mainly palmitate was synthesized. The greatly increased utilization of acetate for fatty acid biosynthesis as the plastids increased in size was due to an increased synthesis of oleate. The maximum synthesis of total fatty acids and monoenoic fatty acids was obtained in chloroplasts prepared from leaf tissue 6–8 cm from the base of the plant where granal formation was most active. Fully-developed chloroplasts prepared from distal regions of the leaf were less active in fatty acid biosynthesis. Maize chloroplasts failed to synthesize fatty acids when isolated by methods commonly used to prepare active spinach chloroplasts. The method of isolation which included a density gradient gave a high proportion of Class I chloroplasts from maize leaves and incorporated up to about 10% of the acetate used. Biosynthesis of unsaturated fatty acids, especially with chloroplasts prepared from the most mature tissue, was increased by the addition of both mitochondrial and microsomal fractions. Increases in polyunsaturated fatty acids were also obtained but the proportions in the newly-synthesized fatty acids were well below the endogenous levels. Monoenoic synthesis was greatly stimulated by increasing the pH in the range 7·0–8·0 and also the highest proportions of unsaturated fatty acids were obtained at short incubation times.  相似文献   

18.
There was an obvious decrease in caffeic acid derivatives during the boiling of cube-shaped blocks of sweet potatoes. They also decreased in a mixture of freeze-dried sweet-potato powder and water maintained at room temperature. Ascorbic acid prevented the decrease, supporting the occurrence of an enzyme reaction with polyphenol oxidase (PPO). 5-O-Caffeoylquinic acid (5-CQA, "3-O-caffeoylquinic acid" as a trivial name) and 3,5-di-O-caffeoylquinic acid (3,5-CQA), major phenolic compounds of sweet potato, did not change when they were separately heated in boiling water. When the mixture of powdered sweet potato and water was heated at 100 degrees C, there was only a negligible decrease in the total amount of phenolic compounds, and portions of 5-CQA and 3,5-CQA were found to be isomerized to 3-CQA, 4-CQA, 3,4-CQA, and 4,5-CQA. The content and composition of the phenolic compounds in sweet potatoes differed between fresh and long-stored ones, as did their response to heating.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号