首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data. RESULTS: We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.  相似文献   

2.
MOTIVATION: Data on protein-protein interactions (PPIs) are increasing exponentially. To date, large-scale protein interaction networks are available for human and most model species. The arising challenge is to organize these networks into models of cellular machinery. As in other biological domains, a comparative approach provides a powerful basis for addressing this challenge. RESULTS: We develop a probabilistic model for protein complexes that are conserved across two species. The model describes the evolution of conserved protein complexes from an ancestral species by protein interaction attachment and detachment and gene duplication events. We apply our model to search for conserved protein complexes within the PPI networks of yeast and fly, which are the largest networks in public databases. We detect 150 conserved complexes that match well-known complexes in yeast and are coherent in their functional annotations both in yeast and in fly. In comparison with two previous approaches, our model yields higher specificity and sensitivity levels in protein complex detection. AVAILABILITY: The program is available upon request.  相似文献   

3.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

4.
MOTIVATION: Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. RESULTS: We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.  相似文献   

5.
Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.  相似文献   

6.

Background  

How to detect protein complexes is an important and challenging task in post genomic era. As the increasing amount of protein-protein interaction (PPI) data are available, we are able to identify protein complexes from PPI networks. However, most of current studies detect protein complexes based solely on the observation that dense regions in PPI networks may correspond to protein complexes, but fail to consider the inherent organization within protein complexes.  相似文献   

7.

Background  

After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI) networks warrants development of efficient computational methods for extraction of significant complexes.  相似文献   

8.
Lee AJ  Lin MC  Hsu CM 《Bio Systems》2011,103(3):392-399
Many methods have been proposed for mining protein complexes from a protein-protein interaction network; however, most of them focus on unweighted networks and cannot find overlapping protein complexes. Since one protein may serve different roles within different functional groups, mining overlapping protein complexes in a weighted protein-protein interaction network has attracted more and more attention recently. In this paper, we propose an effective method, called MDOS (Mining Dense Overlapping Subgraphs), for mining dense overlapping protein complexes (subgraphs) in a weighted protein-protein interaction network. The proposed method can integrate the information about known complexes into a weighted protein-protein interaction network to improve the mining results. The experiment results show that our method mines more known complexes and has higher sensitivity and accuracy than the CODENSE and MCL methods.  相似文献   

9.
Predicting protein functions with message passing algorithms   总被引:2,自引:0,他引:2  
MOTIVATION: In the last few years, a growing interest in biology has been shifting toward the problem of optimal information extraction from the huge amount of data generated via large-scale and high-throughput techniques. One of the most relevant issues has recently emerged that of correctly and reliably predicting the functions of a given protein with that of functions exploiting information coming from the whole network of proteins physically interacting with the functionally undetermined one. In the present work, we will refer to an 'observed' protein as the one present in the protein-protein interaction networks published in the literature. METHODS: The method proposed in this paper is based on a message passing algorithm known as Belief Propagation, which accepts the network of protein's physical interactions and a catalog of known protein's functions as input, and returns the probabilities for each unclassified protein of having one chosen function. The implementation of the algorithm allows for fast online analysis, and can easily be generalized into more complex graph topologies taking into account hypergraphs, i.e. complexes of more than two interacting proteins. RESULTS: Benchmarks of our method are the two Saccharomyces cerevisiae protein-protein interaction networks and the Database of Interacting Proteins. The validity of our approach is successfully tested against other available techniques. CONTACT: leone@isiosf.isi.it SUPPLEMENTARY INFORMATION: http://isiosf.isi.it/~pagnani  相似文献   

10.
Greedily building protein networks with confidence   总被引:2,自引:0,他引:2  
MOTIVATION: With genome sequences complete for human and model organisms, it is essential to understand how individual genes and proteins are organized into biological networks. Much of the organization is revealed by proteomics experiments that now generate torrents of data. Extracting relevant complexes and pathways from high-throughput proteomics data sets has posed a challenge, however, and new methods to identify and extract networks are essential. We focus on the problem of building pathways starting from known proteins of interest. RESULTS: We have developed an efficient, greedy algorithm, SEEDY, that extracts biologically relevant biological networks from protein-protein interaction data, building out from selected seed proteins. The algorithm relies on our previous study establishing statistical confidence levels for interactions generated by two-hybrid screens and inferred from mass spectrometric identification of protein complexes. We demonstrate the ability to extract known yeast complexes from high-throughput protein interaction data with a tunable parameter that governs the trade-off between sensitivity and selectivity. DNA damage repair pathways are presented as a detailed example. We highlight the ability to join heterogeneous data sets, in this case protein-protein interactions and genetic interactions, and the appearance of cross-talk between pathways caused by re-use of shared components. SIGNIFICANCE AND COMPARISON: The significance of the SEEDY algorithm is that it is fast, running time O[(E + V) log V] for V proteins and E interactions, a single adjustable parameter controls the size of the pathways that are generated, and an associated P-value indicates the statistical confidence that the pathways are enriched for proteins with a coherent function. Previous approaches have focused on extracting sub-networks by identifying motifs enriched in known biological networks. SEEDY provides the complementary ability to perform a directed search based on proteins of interest. AVAILABILITY: SEEDY software (Perl source), data tables and confidence score models (R source) are freely available from the author.  相似文献   

11.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

12.
This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.  相似文献   

13.
Predicting interactions in protein networks by completing defective cliques   总被引:6,自引:0,他引:6  
Datasets obtained by large-scale, high-throughput methods for detecting protein-protein interactions typically suffer from a relatively high level of noise. We describe a novel method for improving the quality of these datasets by predicting missed protein-protein interactions, using only the topology of the protein interaction network observed by the large-scale experiment. The central idea of the method is to search the protein interaction network for defective cliques (nearly complete complexes of pairwise interacting proteins), and predict the interactions that complete them. We formulate an algorithm for applying this method to large-scale networks, and show that in practice it is efficient and has good predictive performance. More information can be found on our website http://topnet.gersteinlab.org/clique/ CONTACT: Mark.Gerstein@yale.edu SUPPLEMENTARY INFORMATION: Supplementary Materials are available at Bioinformatics online.  相似文献   

14.
15.

Background

Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms.

Methods

We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes.

Results

The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches.
  相似文献   

16.
Currently, there is a major effort to map protein-protein interactions on a genome-wide scale. The utility of the resulting interaction networks will depend on the reliability of the experimental methods and the coverage of the approaches. Known macromolecular complexes provide a defined and objective set of protein interactions with which to compare biochemical and genetic data for validation. Here, we show that a significant fraction of the protein-protein interactions in genome-wide datasets, as well as many of the individual interactions reported in the literature, are inconsistent with the known 3D structures of three recent complexes (RNA polymerase II, Arp2/3 and the proteasome). Furthermore, comparison among genome-wide datasets, and between them and a larger (but less well resolved) group of 174 complexes, also shows marked inconsistencies. Finally, individual interaction datasets, being inherently noisy, are best used when integrated together, and we show how simple Bayesian approaches can combine them, significantly decreasing error rate.  相似文献   

17.
Wang J  Liu B  Li M  Pan Y 《BMC genomics》2010,11(Z2):S10

Background

Identification of protein complexes in large interaction networks is crucial to understand principles of cellular organization and predict protein functions, which is one of the most important issues in the post-genomic era. Each protein might be subordinate multiple protein complexes in the real protein-protein interaction networks. Identifying overlapping protein complexes from protein-protein interaction networks is a considerable research topic.

Result

As an effective algorithm in identifying overlapping module structures, clique percolation method (CPM) has a wide range of application in social networks and biological networks. However, the recognition accuracy of algorithm CPM is lowly. Furthermore, algorithm CPM is unfit to identifying protein complexes with meso-scale when it applied in protein-protein interaction networks. In this paper, we propose a new topological model by extending the definition of k-clique community of algorithm CPM and introduced distance restriction, and develop a novel algorithm called CP-DR based on the new topological model for identifying protein complexes. In this new algorithm, the protein complex size is restricted by distance constraint to conquer the shortcomings of algorithm CPM. The algorithm CP-DR is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes.

Conclusion

The proposed algorithm CP-DR based on clique percolation and distance restriction makes it possible to identify dense subgraphs in protein interaction networks, a large number of which correspond to known protein complexes. Compared to algorithm CPM, algorithm CP-DR has more outstanding performance.
  相似文献   

18.
The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.  相似文献   

19.
We develop a stochastic model for quantifying the binary measurements of protein-protein interactions. A key concept in the model is the binary response function (BRF) which represents the conditional probability of successfully detecting a protein-protein interaction with a given number of the protein complexes. A popular form of the BRF is introduced and the effect of the sharpness (Hill's coefficient) of this function is studied. Our model is motivated by the recently developed yeast two-hybrid method for measuring protein-protein interaction networks. We suggest that the same phenomenological BRF can also be applied to the mass spectroscopic measurement of protein-protein interactions. Based on the model, we investigate the contributions to the network topology of protein-protein interactions from (i) the distribution of protein binary association free energy, and from (ii) the cellular protein abundance. It is concluded that the association constants among different protein pairs cannot be totally independent. It is also shown that not only the association constants but also the protein abundance could be a factor in producing the power-law degree distribution of protein-protein interaction networks.  相似文献   

20.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号