首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Eu3+–β‐diketonate complexes are used, for example, in solid‐state lighting (SSL) or light‐converting molecular devices. However, their low emission quantum efficiency due to water molecules coordinated to Eu3+ and low photostability are still problems to be addressed. To overcome such challenges, we synthesized Eu3+ tetrakis complexes based on [Q][Eu(tfaa)4] and [Q][Eu(dbm)4] (Q1 = C26H56N+, Q2 = C19H42N+, and Q3 = C17H38N+), replacing the water molecules in the tris stoichiometry. The tetrakis β‐diketonates showed desirable thermal stability for SSL and, under excitation at 390 nm, they displayed the characteristic Eu3+ emission in the red spectral region. The quantum efficiencies of the dbm complexes achieved values as high as 51%, while the tfaa complexes exhibited lower quantum efficiencies (28–33%), but which were superior to those reported for the tris complexes. The structures were evaluated using the Sparkle/PM7 model and comparing the theoretical and the experimental Judd–Ofelt parameters. [Q1][Eu(dbm)4] was used to coat a near‐UV light‐emitting diode (LED), producing a red‐emitting LED prototype that featured the characteristic emission spectrum of [Q1][Eu(dbm)4]. The emission intensity of this prototype decreased only 7% after 30 h, confirming its high photostability, which is a notable result considering Eu3+ complexes, making it a potential candidate for SSL.  相似文献   

2.
In this work, we explored the possible polypharmacological potential of the already established antimicrobials against gastrointestinal pathogens, 4‐(alkylamino)‐3‐nitrocoumarins, as antianxiety agents, using a battery of in vivo experiments. Three chosen coumarin derivatives, differing in the substituent (sec‐butylamino, hexadecylamino, or benzylamino) at position 4, at the doses of 25, 50 and 100 mg kg–1, were evaluated in light/dark, open‐field, horizontal wire and diazepam‐induced sleep models using male BALB/c mice. Depending on the applied dose, all three tested coumarins displayed a noteworthy anxiolytic‐like effect. 4‐(sec‐Butylamino)‐3‐nitro‐2H‐chromen‐2‐one and 4‐(hexadecylamino)‐3‐nitro‐2H‐chromen‐2‐one could be recognized as true anxiolytics in the lowest applied dose, based on three tests, without exerting any sedative effects. Thus, the 3‐nitrocoumarin core deserves further chemical diversity exploration in the ‘antianxiety’ direction.  相似文献   

3.
4.
5.
β‐N‐methylamino‐l ‐alanine (BMAA), a neurotoxic amino acid produced by cyanobacteria, has been suggested to be involved in the etiology of a neurodegenerative disease complex which includes Parkinson‐dementia complex (PDC). In PDC, neuromelanin‐containing neurons in substantia nigra are degenerated. Many PDC patients also have an uncommon pigmentary retinopathy. The aim of this study was to investigate the distribution of 3H‐BMAA in mice and frogs, with emphasis on pigment‐containing tissues. Using autoradiography, a distinct retention of 3H‐BMAA was observed in melanin‐containing tissues such as the eye and neuromelanin‐containing neurons in frog brain. Analysis of the binding of 3H‐BMAA to Sepia melanin in vitro demonstrated two apparent binding sites. In vitro‐studies with synthetic melanin revealed a stronger interaction of 3H‐BMAA with melanin during synthesis than the binding to preformed melanin. Long‐term exposure to BMAA may lead to bioaccumulation in melanin‐ and neuromelanin‐containing cells causing high intracellular levels, and potentially changed melanin characteristics via incorporation of BMAA into the melanin polymer. Interaction of BMAA with melanin may be a possible link between PDC and pigmentary retinopathy.  相似文献   

6.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia.  相似文献   

7.
8.
Allograft interstitial fibrosis was characterized by massive extracellular matrix deposition caused by activated fibroblasts and myofibroblasts. Epithelial‐mesenchymal transition (EMT) is recognized as an important source of myofibroblasts contributing to the pathogenesis of allograft interstitial fibrosis. Smad ubiquitination regulatory factor 1 (Smurf1) has been recently reported to be involved in the progression of EMT. Our study was to detect the effect of Bortezomib and Smurf1 in the EMT and allograft interstitial fibrosis. Biomarkers of EMT, as well as Smurf1, were examined in human proximal tubular epithelial cells (HK‐2) treated with tumour necrosis factor‐alpha (TNF‐α) in various doses or at various time points by Western Blotting or qRT‐PCR. We knockdown or overexpressed Smurf1 in HK‐2 cells. Furthermore, rat renal transplant model was established and intervened by Bortezomib. Allograft tissues from human and rats were also collected and prepared for HE, Masson's trichrome, immunohistochemical staining and western blotting assays. As a result, we found that TNF‐α significantly promoted the development of EMT in a time‐dependent and dose‐dependent manner through Smurf1/Akt/mTOR/P70S6K signalling pathway. More importantly, Bortezomib alleviated the progression of EMT and allograft interstitial fibrosis in vivo and in vitro by inhibiting the production of TNF‐α and expression of Smurf1. In conclusion, Smurf1 plays a critical role in the development of EMT induced by TNF‐α. Bortezomib can attenuate the Sumrf1‐mediated progression of EMT and renal allograft interstitial fibrosis, which could be suggested as a novel choice for the prevention and treatment of renal allograft interstitial fibrosis.  相似文献   

9.
2‐Chloro‐2′‐deoxyadenosine (cladribine, 1 ) was acylated with valproic acid ( 2 ) under various reaction conditions yielding 2‐chloro‐2′‐deoxy‐3′,5′‐O‐divalproyladenosine ( 3 ) as well as the 3′‐O‐ and 5′‐O‐monovalproylated derivatives, 2‐chloro‐2′‐deoxy‐3′‐O‐valproyladenosine ( 4 ) and 2‐chloro‐2′‐deoxy‐5′‐O‐valproyladenosine ( 5 ), as new co‐drugs. In addition, 6‐azauridine‐2′,3′‐O‐(ethyl levulinate) ( 8 ) was valproylated at the 5′‐OH group (→ 9 ). All products were characterized by 1H‐ and 13C‐NMR spectroscopy and ESI mass spectrometry. The structure of the by‐product 6 (N‐cyclohexyl‐N‐(cyclohexylcarbamoyl)‐2‐propylpentanamide), formed upon valproylation of cladribine in the presence of N,N‐dimethylaminopyridine and dicyclohexylcarbodiimide, was analyzed by X‐ray crystallography. Cladribine as well as its valproylated co‐drugs were tested upon their cancerostatic/cancerotoxic activity in human astrocytoma/oligodendroglioma GOS‐3 cells, in rat malignant neuro ectodermal BT4Ca cells, as well as in phorbol‐12‐myristate 13‐acetate (PMA)‐differentiated human THP‐1 macrophages. The most important result of these experiments is the finding that only the 3′‐O‐valproylated derivative 4 exhibits a significant antitumor activity while the 5′‐O‐ as well as the 3′,5′‐O‐divalproylated cladribine derivatives 3 and 5 proved to be inactive.  相似文献   

10.
Site selective mono‐ and dimetalation methods have been developed for the functionalization of 1‐[(1,1′‐biphenyl)‐2‐yl]‐1H‐pyrrole. Optical resolution of the prepared 1‐[(3‐carboxy‐1,1′‐biphenyl)‐2‐yl]pyrrole‐2‐carboxylic acid provided new atropisomeric 1‐arylpyrrole derivatives. The absolute configuration of the pure dicarboxylic acid enantiomers was determined by single crystal X‐ray diffraction and CD spectroscopy. Chirality 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Short‐chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2‐keto‐3‐deoxy‐d ‐gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG‐producing SDR enzymes (NADPH‐dependent A1‐R and NADH‐dependent A1‐R′) involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes—KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)—prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5‐diketo‐3‐deoxy‐d ‐gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X‐ray crystallography. Both PcaKduD and SpyDhuD consist of a three‐layered structure, α/β/α, with a coenzyme‐binding site in the Rossmann fold; similar to enzymes A1‐R and A1‐R′, both arrange the two short and long loops close to the coenzyme‐binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1‐R′ but not A1‐R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2′ coenzyme region were determined to be structurally crucial for dual‐coenzyme specificity in PcaKduD by structural comparison of the NADH‐ and NADPH‐specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual‐coenzyme specificity. Proteins 2016; 84:934–947. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Elucidating protein function from its structure is central to the understanding of cellular mechanisms. This involves deciphering the dependence of local structural motifs on sequence. These structural motifs may be stabilized by direct or water‐mediated hydrogen bonding among the constituent residues. π‐Turns, defined by interactions between (i) and (i + 5) positions, are large enough to contain a central space that can embed a water molecule (or a protein moiety) to form a stable structure. This work is an analysis of such embedded π‐turns using a nonredundant dataset of protein structures. A total of 2965 embedded π‐turns have been identified, as also 281 embedded Schellman motif, a type of π‐turn which occurs at the C‐termini of α‐helices. Embedded π‐turns and Schellman motifs have been classified on the basis of the protein atoms of the terminal turn residues that are linked by the embedded moiety, conformation, residue composition, and compared with the turns that have terminal residues connected by direct hydrogen bonds. Geometrically, the turns have been fitted to a circle and the position of the linker relative to its center analyzed. The hydroxyl group of Ser and Thr, located at (i + 3) position, is the most prominent linker for the side‐chain mediated π‐turns. Consideration of residue conservation among homologous sequences indicates the terminal and the linker positions to be the most conserved. The embedded π‐turn as a binding site (for the linker) is discussed in the context of “nest,” a concave depression that is formed in protein structures with adjacent residues having enantiomeric main‐chain conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 441–453, 2014.  相似文献   

13.
A variety of applications of 8‐alkynylated nucleosides has prompted the synthesis of new purine analogues. Bromination of unprotected 2‐amino‐2′‐deoxyadenosine with Br2/AcOH/AcONa gives 2‐amino‐8‐bromo‐2′‐deoxyadenosine (87%). The brominated derivative is converted to 8‐alkynylated 2‐amino‐2′‐deoxyadenosines by palladium‐catalyzed Sonogashira cross‐coupling reaction via microwave assistance (81 – 95%). The resulting compounds are further transformed to 8‐alkynylated 2′‐deoxyisoguanosines (52 – 70%). The physical properties of new compounds are investigated.  相似文献   

14.
Optically active 3,3′‐dimethyl‐2,2′‐diamino‐1,1′‐binaphthyl (DM‐DABN) and 3,3′‐dimethyl‐2‐amino‐2′‐hydroxybinaphthyl (DM‐NOBIN) derivatives were synthesized by Cu‐(?)‐sparteine complex‐catalyzed enantioselective homo‐ and hetero‐coupling of 2‐naphthylamine, respectively. The difference in enantioselectivity was observed by changing the concentration of oxygen. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

16.
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N‐linked glycans, including the presence of β‐1,2‐xylose and core α‐1,3‐fucose residues in plants, can affect the activity, potency and immunogenicity of plant‐derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N‐glycosylation machinery to allow the synthesis of complex N‐glycans lacking β‐1,2‐xylose and core α‐1,3‐fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant‐specific α‐1,3‐fucosyltransferase and β‐1,2‐xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry‐based N‐glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64‐binding affinity of 2G12 glycovariants produced in wild‐type N. benthamiana, the newly generated FX‐KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco‐engineered antibody performed as well as its CHO‐produced counterpart.  相似文献   

17.
18.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

19.
20.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号