首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC‐derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow‐derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT‐PCR and Transwell assays. We also evaluated the effects of EPC‐derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA‐MALAT1. We confirmed that LncRNA‐MALAT1 directly binds to miR‐124 to negatively control miR‐124 activity. Moreover, overexpression of miR‐124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC‐derived exosomes. A dual‐luciferase reporter assay indicated that the integrin ITGB1 is the target of miR‐124. Mice treated with EPC‐derived exosome‐BMM co‐transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC‐derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA‐MALAT1.  相似文献   

3.
4.
Osteosarcoma is a bone tumor that frequently develops during adolescence. 2‐Methoxyestradiol (2‐ME), a naturally occurring metabolite of 17β‐estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2‐ME actions, we studied the effect of 2‐ME treatment on OPG gene expression in human osteosarcoma cells. 2‐ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2‐ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3‐, 1.9‐, 2.8‐, and 2.5‐fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2‐ME treatment. The effect of 2‐ME on osteosarcoma cells was ligand‐specific as parent estrogen, 17β‐estradiol and a tumorigenic estrogen metabolite, 16α‐hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co‐treating osteosarcoma cells with OPG protein did not further enhance 2‐ME‐mediated anti‐tumor effects. OPG‐released in 2‐ME‐treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2‐ME‐mediated anti‐proliferative effects in osteosarcoma cells, but rather participates in anti‐resorptive functions of 2‐ME in bone tumor environment. J. Cell. Biochem. 109: 950–956, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Aseptic loosening caused by periprosthetic osteolysis (PPO) is the main reason for the primary artificial joint replacement. Inhibition of inflammatory osteolysis has become the main target of drug therapy for prosthesis loosening. MiR‐106b is a newly discovered miRNA that plays an important role in tumour biology, inflammation and the regulation of bone mass. In this study, we analysed the in vivo effect of miR‐106b on wear debris‐induced PPO. A rat implant loosening model was established. The rats were then administrated a lentivirus‐mediated miR‐106b inhibitor, miR‐106b mimics or an equivalent volume of PBS by tail vein injection. The expression levels of miR‐106b were analysed by real‐time PCR. Morphological changes in the distal femurs were assessed via micro‐CT and histopathological analysis, and cytokine expression levels were examined via immunohistochemical staining and ELISA. The results showed that treatment with the miR‐106b inhibitor markedly suppressed the expression of miR‐106b in distal femur and alleviated titanium particle‐induced osteolysis and bone loss. Moreover, the miR‐106b inhibitor decreased TRAP‐positive cell numbers and suppressed osteoclast formation, in addition to promoting the activity of osteoblasts and increasing bone formation. MiR‐106b inhibition also significantly regulated macrophage polarization and decreased the inflammatory response as compared to the control group. Furthermore, miR‐106b inhibition blocked the activation of the PTEN/PI3K/AKT and NF‐κB signalling pathways. Our findings indicated that miR‐106b inhibition suppresses wear particles‐induced osteolysis and bone destruction and thus may serve as a potential therapy for PPO and aseptic loosening.  相似文献   

8.
A growing number of long non‐coding RNAs (lncRNAs) have been found to be involved in diverse biological processes such as cell cycle regulation, embryonic development, and cell differentiation. However, limited knowledge is available concerning the underlying mechanisms of lncRNA functions. In this study, we found down‐regulation of TCONS_00041960 during adipogenic and osteogenic differentiation of glucocorticoid‐treated bone marrow mesenchymal stem cells (BMSCs). Furthermore, up‐regulation of TCONS_00041960 promoted expression of osteogenic genes Runx2, osterix, and osteocalcin, and anti‐adipogenic gene glucocorticoid‐induced leucine zipper (GILZ). Conversely, expression of adipocyte‐specific markers was decreased in the presence of over‐expressed TCONS_00041960. Mechanistically, we determined that TCONS_00041960 as a competing endogenous RNA interacted with miR‐204‐5p and miR‐125a‐3p to regulate Runx2 and GILZ, respectively. Overall, we identified a new TCONS_00041960‐miR‐204‐5p/miR‐125a‐3p‐Runx2/GILZ axis involved in regulation of adipogenic and osteogenic differentiation of glucocorticoid‐treated BMSCs.  相似文献   

9.
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell‐microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi‐photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.   相似文献   

10.
11.
12.
13.
14.
15.
Osteoporosis, defined as decreased bone mineral density (BMD), poses patients in dangers for fracture risk and has become a major public health problem worldwide because of is associated morbidity, mortality and costs. Without doubt, early detection and timely intervention are important to successfully manage osteoporosis and its associated complications. The dual‐energy x‐ray absorptiometry (DXA) is the most popular and standard method to measure BMD. However, limitations including radiation exposure and availability restrict its application for osteoporosis screening among general population. In this study, we developed a simple method to detect human distal radius bone density based on near infrared (NIR) image system. Among 10 volunteers (including 5 young and 5 elderly participants) receiving bone density measurement using our NIR image system at the ultradistal part of bilateral distal radius, we demonstrated a strong correlation between the optical attenuation and BMD measured with DXA, which may facilitate predicting bone density status. We hope our potential NIR image system may open a new avenue for development of osteoporosis screening facilities and help in prevention of osteoporosis related fracture and its associated complications in the near future. Pearson's correlations between BMD values from the DXA and light intensity of NIR system.   相似文献   

16.
To investigate the potential beneficial effect of insulin‐like growth factor‐1 (IGF‐1) in BMSC transplantation therapy of uterus injury and the underlying molecular mechanisms, rat BMSCs were isolated and cultured. The relative expressions of IGF‐1 and IL‐10 were determined by RT‐PCR and immunoblotting. The secretory IL‐10 and released E2 were measured using ELISA kits. The relative vWF and α‐SMA expressions were determined by immunohistochemistry. The direct binding of NF‐κB subunit p50 with IL‐10 promoter was analysed by chromatin immunoprecipitation assay. The regulation of IL‐10 expression by p50 was interrogated by luciferase reporter assay. Our data demonstrated that IGF‐1 expression in BMSCs induced IL‐10 expression and secretion, which was further enhanced by E2‐PLGA. IGF‐1 overexpression improved BMSCs transplantation therapy in rat uterus injury. We further demonstrated that both inhibition and knockdown of p50 abolished IGF‐1‐induced expression and secretion of IL‐10 in BMSCs, which consequently compromised the IGF‐1 conferred therapeutic benefits against uterus injury. Furthermore, we elucidated that p50 regulated IL‐10 expression via direct association with its promoter. Our data suggested that transplantation of IGF‐1 overexpressing BMSCs improved functional regeneration of injured uterus by inducing IL‐10 expression and secretion via activation of NF‐κB signalling.  相似文献   

17.
18.
19.
Objective: To evaluate the precision and accuracy of dual‐energy X‐ray absorptiometry (DXA) for the measurement of total‐bone mineral density (TBMD), total‐body bone mineral (TBBM), fat mass (FM), and bone‐free lean tissue mass (LTM) in mice. Research Methods and Procedures: Twenty‐five male C57BL/6J mice (6 to 11 weeks old; 19 to 29 g) were anesthetized and scanned three times (with repositioning between scans) using a peripheral densitometer (Lunar PIXImus). Gravimetric and chemical extraction techniques (Soxhlet) were used as the criterion method for the determination of body composition; ash content was determined by burning at 600°C for 8 hours. Results: The mean intraindividual coefficients of variation (CV) for the repeated DXA analyses were: TBMD, 0.84%; TBBM, 1.60%; FM, 2.20%; and LTM, 0.86%. Accuracy was determined by comparing the DXA‐derived data from the first scan with the chemical carcass analysis data. DXA accurately measured bone ash content (p = 0.942), underestimated LTM (0.59 ± 0.05g, p < 0.001), and overestimated FM (2.19 ± 0.06g, p < 0.001). Thus, DXA estimated 100% of bone ash content, 97% of carcass LTM, and 209% of carcass FM. DXA‐derived values were then used to predict chemical values of FM and LTM. Chemically extracted FM was best predicted by DXA FM and DXA LTM [FM = ?0.50 + 1.09(DXA FM) ? 0.11(DXA LTM), model r2 = 0.86, root mean square error (RMSE) = 0.233 g] and chemically determined LTM by DXA LTM [LTM = ?0.14 + 1.04(DXA LTM), r2 = 0.99, RMSE = 0.238 g]. Discussion: These data show that the precision of DXA for measuring TBMD, TBBM, FM, and LTM in mice ranges from a low of 0.84% to a high of 2.20% (CV). DXA accurately measured bone ash content but overestimated carcass FM and underestimated LTM. However, because of the close relationship between DXA‐derived data and chemical carcass analysis for FM and LTM, prediction equations can be derived to more accurately predict body composition.  相似文献   

20.

Background

A combination of tissue engineering methods employing mesenchymal stem cells (MSCs) together with gene transfer takes advantage of innovative strategies and highlights a new approach for targeting osteoarthritis (OA) and other cartilage defects. Furthermore, the development of systems allowing tunable transgene expression as regulated by natural disease‐induced substances is highly desirable.

Methods

Bone marrow‐derived equine MSCs were transduced with a lentiviral vector expressing interleukin‐1 receptor antagonist (IL‐1Ra) gene under the control of an inducible nuclear factor‐kappa B‐responsive promoter and IL‐1Ra production upon pro‐inflammatory cytokine stimulation [tumor necrosis factor (TNF)α, interleukin (IL)‐1β] was analysed. To assess the biological activity of the IL‐1Ra protein that was produced and the therapeutic effect of IL‐1Ra‐expressing MSCs (MSC/IL‐1Ra), cytokine‐based two‐ and three‐dimensional in vitro models of osteoarthritis using equine chondrocytes were established and quantitative real‐time polymerase chain reaction (PCR) analysis was used to measure the gene expression of aggrecan, collagen IIA1, interleukin‐1β, interleukin‐6, interleukin‐8, matrix metalloproteinase‐1 and matrix metalloproteinase‐13.

Results

A dose‐dependent increase in IL‐1Ra expression was found in MSC/IL‐1Ra cells upon TNFα administration, whereas stimulation using IL‐1β did not lead to IL‐1Ra production above the basal level observed in nonstimulated cells as a result of the existing feedback loop. Repeated cycles of induction allowed on/off modulation of transgene expression. In vitro analyses revealed that IL‐1Ra protein present in the conditioned medium from MSC/IL‐1Ra cells blocks OA onset in cytokine‐treated equine chondrocytes and co‐cultivation of MSC/IL‐1Ra cells with osteoarthritic spheroids alleviates the severity of the osteoarthritic changes.

Conclusions

Thus, pro‐inflammatory cytokine induced IL‐1Ra protein expression from genetically modified MSCs might represent a promising strategy for osteoarthritis treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号