首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitronectin is a major cell adhesion molecule present in the subendothelial matrix that mediates the attachment and spreading of a variety of cells. The carboxy-terminal end of vitronectin has a consensus sequence for glycosaminoglycan-binding. To define the functional role of this domain, we generated fragments of vitronectin that lack the glycosaminoglycan-binding domain by formic acid cleavage of plasma-derived vitronectin. In addition, we also generated similar recombinant fragments of vitronectin as glutathione S-transferase fusion proteins in E. coll. These fragments were tested for their ability to support the adhesion of human umbilical vein endothelial cells. These fragments promoted endothelial cell adhesion, reaching half maximal activity at 2-5 μg/well compared to plasma-derived vitronectin which reached at 0.2 μg/well. However, the cells that adhered to these fragments did not develop well-formed focal adhesion plaques and actin stress fibers. In addition, these fragments were poorly chemotactic for endothelial cell migration when compared to intact plasma-derived vitronectin in a modified Boyden chamber assay. The present studies show that carboxy-terminal glycosaminoglycan-binding domain of vitronectin is essential for proper cytoskeletal organization and migration of endothelial cells on vitronectin substratum.  相似文献   

2.
Vitronectin is a major cell adhesion molecule present in the subendothelial matrix that mediates the attachment and spreading of a variety of cells. The carboxy-terminal end of vitronectin has a consensus sequence for glycosaminoglycan-binding. To define the functional role of this domain, we generated fragments of vitronectin that lack the glycosaminoglycan-binding domain by formic acid cleavage of plasma-derived vitronectin. In addition, we also generated similar recombinant fragments of vitronectin as glutathione S-transferase fusion proteins in E. coll. These fragments were tested for their ability to support the adhesion of human umbilical vein endothelial cells. These fragments promoted endothelial cell adhesion, reaching half maximal activity at 2-5 μg/well compared to plasma-derived vitronectin which reached at 0.2 μg/well. However, the cells that adhered to these fragments did not develop well-formed focal adhesion plaques and actin stress fibers. In addition, these fragments were poorly chemotactic for endothelial cell migration when compared to intact plasma-derived vitronectin in a modified Boyden chamber assay. The present studies show that carboxy-terminal glycosaminoglycan-binding domain of vitronectin is essential for proper cytoskeletal organization and migration of endothelial cells on vitronectin substratum.  相似文献   

3.
Chemokines arrest circulating lymphocytes within the vasculature through the rapid up-regulation of leukocyte integrin adhesive activity, promoting subsequent lymphocyte transmigration. However, the key regulatory molecules regulating this process have remained elusive. Here, we demonstrate that Rap1 plays a pivotal role in chemokine-induced integrin activation and migration. Rap1 was activated by secondary lymphoid tissue chemokine (SLC; CCL21) and stromal-derived factor 1 (CXCL4) treatment in lymphocytes within seconds. Inhibition of Rap1 by Spa1, a Rap1-specific GTPase-activating protein, abrogated chemokine-stimulated lymphocyte rapid adhesion to endothelial cells under flow via intercellular adhesion molecule 1. Expression of a dominant active Rap1V12 in lymphocytes stimulated shear-resistant adhesion, robust cell migration on immobilized intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, and transendothelial migration under flow. We also demonstrated that Rap1V12 expression in lymphocytes induced a polarized morphology, accompanied by the redistribution of CXCR4 and CD44 to the leading edge and uropod, respectively. Spa1 effectively suppressed this polarization after SLC treatment. This unique characteristic of Rap1 may control chemokine-induced lymphocyte extravasation.  相似文献   

4.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

5.
Blood vessel formation requires endothelial cell interactions with the extracellular matrix through cell surface receptors, and signaling events that control endothelial cell adhesion, migration, and lumen formation. Laminin-8 (alpha4beta1gamma1) is present in all basement membranes of blood vessels in fetal and adult tissues, but despite its importance in vessel formation, its role in endothelial cell adhesion and migration remains undefined. We examined adhesion and migration of HMEC-1 human microvascular endothelial cells on laminin-8 with an emphasis on the integrin-mediated signaling events, as compared with those on laminin-10/11 and fibronectin. We found that laminin-8 was less potent in HMEC-1 cell adhesion than laminin-1, laminin-10/11, and fibronectin, and mediated cell adhesion through alpha6beta1 integrin. Despite its weak cell-adhesive activity, laminin-8 was as potent as laminin-10/11 in promoting cell migration. Cells adhering to laminin-8 displayed streaks of thin actin filaments and formed lamellipodia at the leading edge of the cells, as observed with cells adhering to laminin-10/11, while cells on fibronectin showed thick actin stress fibers and large focal adhesions. Pull-down assays of GTP-loaded Rho, Rac, and Cdc42 demonstrated that Rac, but not Rho or Cdc42, was preferentially activated on laminin-8 and laminin-10/11, when compared with fibronectin. Furthermore, a dominant-negative mutant of Rac suppressed cell spreading, lamellipodial formation, and migration on laminin-8, but not on fibronectin. These results, taken together, indicate that Rac is activated during endothelial cell adhesion to laminin-8, and is pivotal for alpha6beta1 integrin-mediated cell spreading and migration on laminin-8.  相似文献   

6.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   

7.
The most life‐threatening aspect of cancer is metastasis; cancer patient mortality is mainly due to metastasis. Among all metastases, presence of brain metastasis is one with the poorest prognosis; the median survival time can be counted in months. Therefore, prevention or decreasing their incidence would be highly desired both by patients and physicians. Metastatic cells invading the brain must breach the cerebral vasculature, primarily the blood‐brain barrier. The key step in this process is the establishment of firm adhesion between the cancer cell and the cerebral endothelial layer. Using the atomic force microscope, a high‐resolution force spectrograph, our aim was to explore the connections among the cell morphology, cellular mechanics, and biological function in the process of transendothelial migration of metastatic cancer cells. By immobilization of a melanoma cell to an atomic force microscope's cantilever, intercellular adhesion was directly measured at quasi‐physiological conditions. Hereby, we present our latest results by using this melanoma‐decorated probe. Binding characteristics to a confluent layer of brain endothelial cells was directly measured by means of single‐cell force spectroscopy. Adhesion dynamics and strength were characterized, and we present data about spatial distribution of elasticity and detachment strength. These results highlight the importance of cellular mechanics in brain metastasis formation and emphasize the enormous potential toward exploration of intercellular dynamic‐related processes.  相似文献   

8.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   

9.
Homing of endothelial progenitor cells (EPCs) is crucial for neoangiogenesis, which might be negatively affected by hypoxia. We investigated the influence of hypoxia on fibronectin binding integrins for migration and cell‐matrix‐adhesion. AMP‐activated kinase (AMPK) and integrin‐linked kinase (ILK) were examined as possible effectors of hypoxia.Human EPCs were expanded on fibronectin (FN) and integrin expression was profiled by flow cytometry. Cell‐matrix‐adhesion‐ and migration‐assays on FN were performed to examine the influence of hypoxia and AMPK‐activation. Regulation of AMPK and ILK was shown by Western blot analysis. We demonstrate the presence of integrin β1, β2 and α5 on EPCs. Adhesion to FN is reduced by blocking β1 and α5 (49% and 2% of control, P < 0.05) whereas α4‐blockade has no effect. Corresponding effects were shown for migration. Hypoxia and AMPK‐activation decrease adhesion on FN. Although total AMPK‐expression remains unchanged, phospho‐AMPK increases eightfold.The EPCs require α5 for adhesion on FN. Hypoxia and AMPK‐activation decrease adhesion. As α5 is the major adhesive factor for EPCs on FN, this suggests a link between AMPK and α5‐integrins. We found novel evidence for a connection between hypoxia, AMPK‐activity and integrin activity. This might affect the fate of EPCs in ischaemic tissue.  相似文献   

10.
The strength of integrin binding between neutrophils and endothelial cells   总被引:1,自引:0,他引:1  
The firm adhesion of activated polymorphonuclear neutrophils to endothelial cells in blood vessels is achieved through binding of the integrin intercellular adhesion molecule. To contribute to the better understanding of this adhesion step, our investigation is aimed at the relationship between integrin expression and the strength of neutrophil binding to endothelial cells. Flow cytometry and 3D scanning microscopy are used to study integrin expression and distribution, respectively. It is found that CD11b/CD18 integrin expression is localized in clusters distributed irregularly over the neutrophil surface. After cell activation, the cluster distribution polarizes, increasing the local CD11b/CD18 density concurrently with nearly doubled integrin expression. The neutrophil adhesion efficiency is measured in a flow chamber coated successively by various substrates, including endothelial cells in an activated state. Analysis of the flow dependence of the number of attached cells reveals the prevailing number of neutrophils with stronger binding to the endothelium when both cells are in the activated state in comparison with non-activated cells.  相似文献   

11.
A pathway of coagulation on endothelial cells   总被引:1,自引:0,他引:1  
Although the endothelial cell is considered antithrombogenic, endothelium has recently been shown to participate in procoagulant reactions. Factor IX bound to specific endothelial cell sites can be activated by the intrinsic and extrinsic pathways of coagulation. Perturbation of endothelium results in induction of tissue factor which promotes factor VIIa-mediated activation of factors IX and X, thus initiating procoagulant events on the endothelial surface. Cell bound factor IXa, in the presence of factor VIII, promotes activation of factor X. The factor Xa formed can interact with endothelial cell factor V/Va, resulting in prothrombin activation. Thrombin then cleaves fibrinogen and a fibrin clot closely associated with the endothelial cell forms. The perturbed endothelial cell thus provides a focus of localized procoagulant events. This model suggests a simple endothelial-cell-dependent mechanism for initiation of coagulation at the site of an injured or pathological vessel.  相似文献   

12.
Yan M  Cheng C  Jiang J  Liu Y  Gao Y  Guo Z  Liu H  Shen A 《Neurochemical research》2009,34(5):1002-1010
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.  相似文献   

13.
The existing of basement membrane improves the development of endothelium while constructing blood vessel equivalent. The amniotic membrane (AM) provides a natural basement membrane and has been used in ocular surface reconstruction. This study evaluated the molecular and cellular characteristics of porcine vascular endothelial cells (ECs) cultured on AM. ECs cultured on AM expressed the endothelial marker vWF and exhibited normal endothelial morphology. Here, we demonstrated that AM enhanced the expression of intercellular molecules, platelet-endothelial cell adhesion molecule-1 (PECAM-1), and adhesion molecule VE-cadherin at the intercellular junctions. The expression level of integrin was markedly higher in ECs cultured on AM than on plastic dish. Furthermore, the AM downregulated the expression of E-selectin and P-selectin in both LPS-activated and non-activated ECs. Consistently, adhesion of leukocytes to both activated and non-activated cells was decreased in ECs cultured on AM. Our results suggest that AM is an ideal matrix to develop a functional endothelium in blood vessel equivalent construction.  相似文献   

14.
The development of choroidal neovascularization (CNV) is a critical step in the pathogenesis of age-related macular degeneration (AMD), a vision-threatening disease. In this study, we used a mouse model of AMD to study the protective effects of resveratrol (RSV) supplementation against CNV as well as the underlying molecular mechanisms. Mice were orally pretreated with RSV daily for 5 days. On the fifth day, the mice underwent laser photocoagulation to induce CNV. One week after laser treatment, CNV volume was significantly lower in the RSV-treated mice compared with vehicle-treated animals. In addition, RSV treatment significantly inhibited macrophage infiltration into the retinal pigment epithelium (RPE)-choroid and suppressed the expression of inflammatory and angiogenic molecules, including vascular endothelial growth factor, monocyte chemotactic protein-1 and intercellular adhesion molecule-1. Importantly, RSV prevented the CNV-induced decrease in activated AMP-activated protein kinase and increase in activated nuclear factor-κB in the RPE-choroid complex. The regulatory effects of RSV on these molecules were confirmed in RPE, microvascular endothelial and macrophage cell lines. Inhibition of macrophage infiltration by RSV was confirmed by in vitro scratch and migration assays. RSV suppressed CNV development, reducing the levels of multiple cytokines secreted from several cell types and inhibiting macrophage migration. The direct effects of RSV on each cell type were confirmed in vitro. Although further studies are needed, RSV could potentially be applied in the clinic to prevent CNV development in AMD.  相似文献   

15.
Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside‐out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the β integrin subunit. Here, we report the first structure of talin bound to an authentic full‐length β integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane–proximal helix of the β tail disrupts an integrin α/β salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside‐out TM signalling.  相似文献   

16.
Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell-cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co-expression of ALCAM by activated monocytes and endothelial cells.  相似文献   

17.
Summary The effect of tumor necrosis factor alpha on vascular endothelial cells was analyzed using a collagen-embedded, three-dimensional culture system, focusing on angiogenesis and expression of cell adhesion molecules. When the endothelial cells were cultured between two layers of type-I collagen gel, they reorganized into a network of branching and anastomosing tubular structures. Once the structure was formed, the cells did not undergo further division. Addition of tumor necrosis factor alpha at 10 to 500 U/ml to the overlaid culture medium inhibited this tube-forming process and enhanced their survival, whereas it suppressed cell growth in monolayer. To test its effect on the expression of cell adhesion molecules, the collagen was digested, and the dispersed cells were stained with anti-intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 monoclonal antibodies. Tumor necrosis factor alpha upregulated the expressions of both molecules for an extended period of time. Even in the absence of tumor necrosis factor alpha, the cells embedded in collagen matrices expressed small amounts of these adhesion molecules. These results indicate that endothelial cells display phenotypic changes in collagen matrices and modulatory response to tumor necrosis factor alpha.  相似文献   

18.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

19.
Summary Ladsin is a laminin-like cell-adhesive scatter factor with potent cell motility-stimulating ability and was purified from serum-free conditioned medium of a malignant human gastric adenocarcinoma cell line STKM-1. To test its possible role in tumor angiogenesis, we investigated its effect on primary culture of endothelial cells (human umbilical vein endothelial cells) and endothelial cell line ECV304 in this study. Cell adhesion and motility effects of ladsin were observed in both types of endothelial cells. In cell-attachment assay, ladsin interacted with integrin α3β1 that was expressed on the endothelial cell surface. In Boyden chambers, ladsin stimulated both directed and random migration of ECV304 cells. Ladsin induced repair of artificial wounds generated in ECV304 cell monolayers by stimulating cell migration. Ladsin did not affect the growth rate of ECV304 cells at a low cell density but significantly increased the saturation cell density. These results suggest that ladsin may be involved in the adhesion and migration of endothelial cells under some physiological and pathological conditions.  相似文献   

20.
《The Journal of cell biology》1995,128(6):1229-1241
CD31 is a member of the immunoglobulin superfamily consisting of six Ig- related domains. It is constitutively expressed by platelets, monocytes, and some lymphocytes, but at tenfold higher levels on vascular endothelial cells. CD31 has both homotypic and heterotypic adhesive properties. We have mapped the homotypic binding sites using a deletion series of CD31-Fc chimeras and a panel of anti-CD31 monoclonal antibodies. An extensive surface of CD31 is involved in homotypic binding with domains 2 and 3 and domains 5 and 6 playing key roles. A model consistent with the experimental data is that CD31 on one cell binds to CD31 on an apposing cell in an antiparallel interdigitating mode requiring full alignment of the six domains of each molecule. In addition to establishing intercellular homotypic contacts. CD31 binding leads to augmented adhesion via beta 1 integrins. The positive cooperation between CD31 and beta 1 integrins can occur in heterologous primate cells (COS cells). The interaction is specific to both CD31 and beta 1 integrins. Neither intercellular adhesion molecule-1 (ICAM- 1)/leukocyte function-associated antigen-1 (LCAM-1) nor neural cell adhesion molecule (NCAM)/NCAM adhesion leads to recruitment of beta 1 integrin adhesion pathways. Establishment of CD31 contacts have effects on the growth and morphology of endothelial cells. CD31(D1-D6)Fc inhibits the growth of endothelial cells in culture. In addition, papain fragments of anti-CD31 antibodies (Fab fragments) disrupt interendothelial contact formation and monolayer integrity when intercellular contacts are being formed. The same reagents are without effect once these contacts have been established, suggesting that CD31- CD31 interactions are critically important only in the initial phases of intercellular adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号